Consequences of the common origin of the knee and the ankle in Cosmic Ray Physics - PowerPoint PPT Presentation

1 / 90
About This Presentation
Title:

Consequences of the common origin of the knee and the ankle in Cosmic Ray Physics

Description:

Some consequences of this common origin: I The chemical composition of the ... knee and ankle (the problem of isotropy of the cosmic radiation at any energy) ... – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 91
Provided by: Falc
Category:

less

Transcript and Presenter's Notes

Title: Consequences of the common origin of the knee and the ankle in Cosmic Ray Physics


1
Consequences of the common origin of the knee
and the ankle in Cosmic Ray Physics
  • Antonio Codino
  • INFN and Dipartimento di Fisica
  • dell'Università degli Studi di Perugia, Italia

2
The knee and the ankle have a common origin
  • Introduction
  • Some consequences of this common origin
  • I The chemical composition of the cosmic
    radiation above 1017 eV up to 1020 eV.
  • II Some basic constraints on the real engine
    accelerating cosmic
  • rays in the Milky Way.
  • III The trend of the residence time of the
    galactic cosmic rays versus energy up to 1019
    eV implied by the common origin of the knee and
    ankle (the problem of isotropy of the cosmic
    radiation at any energy).

3
Papers on the knee and the ankle
  • The present explanation of the knee and the
    ankle, in collaboration with François Plouin,
    may be found in
  • The origin of the ankle (10 pages) Nuclear
    Physics B, 165 (2007) (Proc. Suppl.) 307-316. and
    Astro-ph/0701593, 20 january 2007.
  • A unique mechanism generating the knee and the
    ankle in the local galactic zone (25 pages)
    Vulcano Conference (2006) e Astro-ph/0701521, 18
    january 2007.
  • Galactic basins of helium and iron around the
    knee energy (42 pages) Internal report
    INFN/TC-06/05, February 20th 2006 duplicated in
  • Astro-ph/0701498 del 17 january 2007.
  • The reading of The extension and shape of the
    collecting zones of the galactic cosmic rays from
    helium to iron requires the notion of the
    galactic basin introduced in The Astrophysical
    Journal (2006) 639, 173-184 Codino-Plouin, (12
    pages).
  • The method of calculation may be found in
    Brunetti-Codino, (10 pages) The Astrophysical
    Journal (2000), 528, 789-798

4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
ION BLEND
  • Normalization energy 1014 eV

8
(No Transcript)
9
Postulating constant spectral indices in the
cosmic ray spectrum.This is the heading of a
paragraph in the paper The origin of the
ankle
  • The spectral indices of all ions of the
    cosmic radiation are taken constant in the
    interval
  • 100 GeV - 5 1019 eV (iron ankle
    energy).

10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
An acceleration mechanism predicting constant
spectral indices of 2,5 up to 5 x 1019 eV
  • G. Pizzella, Nature 226434 (1970).
  • The mechanism would operate in the dipole
    magnet fields of neutron stars in a plasma
    atmosphere.
  • G. Trubnikov et al.
  • Pisma v ZhETF, Vol. 62, iss. 2, pp.
    86-90, 1995.
  • About possible generation of cosmic rays and
    gamma-bursts in plasma pinches

15
Chemical composition from 1017 eV to above 1019
eV.
  • An analysis of giant air showers detected
    by the Flys Eye starting at energies 1017 eV
    leads to the following conclusion
  • .It contains, however, an emerging light
    component that grows to about 40 per cent of the
    total flux above 1018 eV.
  • Comments on Astrophysics, T. K. Gaisser et al.
    Vol . 17 numbers 2 and 3, (1993).

16
(No Transcript)
17
(No Transcript)
18
Ion abundances at 1014 eV ( high energy ion
blend)
  • I0 23,30 10-2 particles/(m2 s TeV sr) Energy
    1014 eV

19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
Ion abondances at 1 TeV (well below the
knee energy region)
  • I0 27,1 10-2 particles/(m2 s TeV sr)
    Energy 1012 eV

23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
Let s analyze now a second implication of the
common origin of the knee and the ankle
  • If the theory of the knee and the ankle is
    correct,
  • then it follows that the engine, the real
    engine accelerating cosmic rays in the Milky
    Way, must provide constant spectral indices for
    each ion, in the complete energy range explored,
  • namely, from hundreds GeV up 5 x 1019 eV
    (iron ankle energy).

38
(No Transcript)
39
(No Transcript)
40
Maximum electron energy measured in young
supernovae remnant S. P. Reynolds and J.W.
Keohane, ApJ, 525, 368 (1999)
41
There is a maximum energy Emax gained by
nucleiin supernovae remnants
  • (C.J. Cesarsky and P.O. Lagage, (1983) Astron.
    and Astrophys. 118, 223 e 125, 249)
  • Emax 3/20 (u1/c) Z e B(u1TA)
  • Z e electric charge of the nucleus
  • u1 shock wave velocity (5000 km/s)
  • B magnetic field strength (3 µG)
  • C sound speed in the medium (300 km/s)
  • TA acceleration time 103 years
  • Special mechanisms have been conceived to
    extend Emax
  • H. J. Völk and P.L. Biermann, (1988),
    Astro. Journ. Letters 333, L65.
  • A. R. Bell and S. G. Lucek, (2001),
    Mon. Not. R. Astron. Soc. 321, 433-438.

42
  • If the diffusive shock acceleration believed
    to operate in supernovae remnants has a maximum
    limit in energy (1014 or 1017 eV)
  • and
  • If the spectral indices are constant up to 5
    x 1019 eV
  • the necessary conclusion is that a variety of
  • acceleration mechanisms is at work.

43
Different acceleration mechanisms ...
  • active with variable efficiencies in different
    energy intervals
  • operating in quite dissimilar cosmic regions
  • injecting uneven amounts of ions from hydrogen to
    uranium
  • at very different distances from the Earth

... would finally cooperate to yield a unique
spectral index in the solar system of the Milky
Way.
In my opinion, this hypothetical situation is
unnatural and unplausible.
44
(No Transcript)
45
(No Transcript)
46
Conclusions
  • The computed chemical composition of the
    cosmic radiation, e.g. lnltAgt, has the
    characteristic features
  • of increasing from 1,8 up to 3,2 in the interval
  • 1015 3x1017 eV
  • 2) and of becoming lighter above
  • 3x1017 eV up to 4x1018 eV.

47
Conclusions (cont.)
  • The transition from heavy to light composition
    occurs at 3x1017 eV, a value independent from the
    ion blend.
  • These basic characteristics are in accord with
    the experiments.
  • This transition is generated only by the galactic
    component of the cosmic radiation due to its
    intrisic properties, and not by the appearence
    of an extragalactic component.

48
Conclusions (cont.)
  • For example, Yakutsk data are compatible with
    our calculations in the range 1015 1019 eV and
    those from Flys Eye in the range 3x1017 1019
    eV.

49
Conclusions (cont.)
On the contrary, data from other experiments
(Auger and Hires) disagree with these
calculations. These experiments measure a very
light component in the range 3x1017 5 1019 eV.
50
Fin du séminaire
51
(No Transcript)
52
(No Transcript)
53
(No Transcript)
54
(No Transcript)
55
(No Transcript)
56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
Fin du séminaire
60
Fin du séminaire
61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
From Trevor Weeks
66
(No Transcript)
67
Position of the sources in the Galaxy
Galactic wind
The solution of the knee and ankle problem
Grammage
Asymmetries in the arrival directions of the
cosmic rays
Method of calculation
68
(No Transcript)
69
(No Transcript)
70
(No Transcript)
71
Champ magnétique spirale
72
(No Transcript)
73
(No Transcript)
74
(No Transcript)
75
(No Transcript)
76
(No Transcript)
77
Trajectoires des rayons cosmiques dans le disque
  • Brunetti Codino, ApJ, 2000, 528, 789

78
(No Transcript)
79
Illuminating the Galaxy by an ion beam emitted
from the Earth and counting the number of nuclear
collisions in the disk
nuclear collisions
80
(No Transcript)
81
Energia massima per i nuclei
  • (C.J. Cesarsky and P.O. Lagage, (1983) Astron.
    and Astrophys. 118, 223 e 125, 249)
  • Emax 3/20 (u1/c) Z e B(u1TA)
  • Z e carica del nucleo
  • u1 velocità dellonda (5000 km/s)
  • B campo magnetico (3 µG)
  • C velocità del suono nel mezzo (300 km/s)
  • TA 103 anni
  • Due scappatoie per accrescere lenergia massima
    Emax
  • Mezzo interstellare con proprietà particolari.
  • Particelle accelerate nel vento stellare della
    stella genitrice.
  • ( H. J. Völk P.L. Biermann,
    (1988) Astro. Journ. Letters 333, L65)

82
Energia massima per gli elettroni
  • (GAISSER, pagina 160)
  • Emax 23 TeV u1/c 1/vB 220 TeV
  • Nellarticolo citato (Lagage e Cesarsky) il
    processo di accelerazione avviene prima che la
    massa espulsa al tempo TA si è diluita nello
    spazio interstellare imponendo che la densità
    della massa espulsa uguagli quella del mezzo
    interstellare imperturbato si ha
  • 4/3 p Rrs3 ?mi Mes
  • Rrs raggio del resto di supernova e Mes massa
    espulsa.
  • Approssimando Rrs con u1TA si ottiene TA di
    1000 anni circa con u15000 km/s e Mes 10 masse
    solari (1,989 x 1034 grammi)
  • TA tempo utile per laccelerazione delle
    particelle nel resto delle supernova

83
Acceleratori astrofisici
  • Esplosioni di supernove
  • Pulsar giovani
  • Stelle di neutroni con stelle compagne

84
(No Transcript)
85
Brunetti Codino, ApJ, 2000, 528, 789
86
(No Transcript)
87
(No Transcript)
88
(No Transcript)
89
Sd
g grammage (g/cm2) is the the gas column
swept out by the cosmic rays
LD trajectory length nH number of atoms
per cubic centimeter mH hydrogen mass
g mHnHLD
l A / (s g
NA)
90
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com