Title: Dr. Bassam Kahhaleh
14241
Digital Logic Design
- ?. ?????? ????????
- Dr. Bassam Kahhaleh
2Chapter 1
4241 - Digital Logic Design
Binary Systems
3Digital Systems
- Discrete Data
- Examples
- 26 letters of the alphabet (A, B etc)
- 10 decimal digits (0, 1, 2 etc)
- Combine together
- Words are made of letters (University etc)
- Numbers are made of digits (4241 etc)
- Binary System
- Only 0 and 1 digits
- Can be easily implemented in electronic circuits
4Decimal Number System
- Base (also called radix) 10
- 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Digit Position
- Integer fraction
- Digit Weight
- Weight (Base) Position
- Magnitude
- Sum of Digit x Weight
- Formal Notation
5
1
2
7
4
d2B2d1B1d0B0d-1B-1d-2B-2
(512.74)10
5Octal Number System
- Base 8
- 8 digits 0, 1, 2, 3, 4, 5, 6, 7
- Weights
- Weight (Base) Position
- Magnitude
- Sum of Digit x Weight
- Formal Notation
5
1
2
7
4
5 821 812 807 8-14 8-2
(330.9375)10
(512.74)8
6Binary Number System
- Base 2
- 2 digits 0, 1 , called binary digits or bits
- Weights
- Weight (Base) Position
- Magnitude
- Sum of Bit x Weight
- Formal Notation
- Groups of bits 4 bits Nibble
- 8 bits Byte
1
0
1
0
1
1 220 211 200 2-11 2-2
(5.25)10
(101.01)2
1 0 1 1
1 1 0 0 0 1 0 1
7Hexadecimal Number System
- Base 16
- 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
C, D, E, F - Weights
- Weight (Base) Position
- Magnitude
- Sum of Digit x Weight
- Formal Notation
1
E
5
7
A
1 16214 1615 1607 16-110 16-2
(485.4765625)10
(1E5.7A)16
8The Power of 2
Kilo
Mega
Giga
Tera
9Addition
1
1
Carry
5
5
5
5
0
1
1
Ten Base ? Subtract a Base
10Binary Addition
1
1
1
1
1
1
1
0
1
1
1
1
61 23
1
1
1
1
0
84
0
0
0
0
1
1
1
(2)10
11Binary Subtraction
- Borrow a Base when needed
(10)2
2
1
2
2
2
0
0
0
0
0
1
1
1
0
1
77 23
1
1
1
1
0
-
0
1
0
1
1
1
0
54
12Binary Multiplication
0
1
1
1
1
0
1
1
0
x
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
1
1
0
1
1
1
0
13Number Base Conversions
Evaluate Magnitude
Octal (Base 8)
Evaluate Magnitude
Decimal (Base 10)
Binary (Base 2)
Hexadecimal (Base 16)
Evaluate Magnitude
14Decimal (Integer) to Binary Conversion
- Divide the number by the Base (2)
- Take the remainder (either 0 or 1) as a
coefficient - Take the quotient and repeat the division
Example (13)10
Coefficient
Quotient
Remainder
13
/ 2 6
1 a0 1
6
/ 2 3
0 a1 0
3
/ 2 1
1 a2 1
1
/ 2 0
1 a3 1
Answer (13)10 (a3 a2 a1 a0)2 (1101)2
MSB LSB
15Decimal (Fraction) to Binary Conversion
- Multiply the number by the Base (2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the
division
Example (0.625)10
Coefficient
Integer
Fraction
a-1 1
0.625
2 1 . 25
0.25
2 0 . 5 a-2 0
0.5
2 1 . 0 a-3 1
Answer (0.625)10 (0.a-1 a-2 a-3)2
(0.101)2
MSB LSB
16Decimal to Octal Conversion
Example (175)10
Coefficient
Quotient
Remainder
175
/ 8 21
7 a0 7
21
/ 8 2
5 a1 5
2
/ 8 0
2 a2 2
Answer (175)10 (a2 a1 a0)8 (257)8
Example (0.3125)10
Integer
Fraction
Coefficient
0.3125
8 2 . 5
a-1 2
0.5
8 4 . 0 a-2 4
Answer (0.3125)10 (0.a-1 a-2 a-3)8
(0.24)8
17Binary - Octal Conversion
- 8 23
- Each group of 3 bits represents an octal digit
Example
Assume Zeros
( 1 0 1 1 0 . 0 1 )2
( 2 6 . 2 )8
Works both ways (Binary to Octal Octal to
Binary)
18Binary - Hexadecimal Conversion
- 16 24
- Each group of 4 bits represents a hexadecimal
digit
Example
Assume Zeros
( 1 0 1 1 0 . 0 1 )2
( 1 6 . 4 )16
Works both ways (Binary to Hex Hex to Binary)
19Octal - Hexadecimal Conversion
- Convert to Binary as an intermediate step
Example
( 2 6 . 2 )8
Assume Zeros
Assume Zeros
( 0 1 0 1 1 0 . 0 1 0 )2
( 1 6 . 4 )16
Works both ways (Octal to Hex Hex to Octal)
20Decimal, Binary, Octal and Hexadecimal
21Complements
- 1s Complement (Diminished Radix Complement)
- All 0s become 1s
- All 1s become 0s
- Example (10110000)2
- ? (01001111)2
- If you add a number and its 1s complement
1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1
22Complements
- 2s Complement (Radix Complement)
- Take 1s complement then add 1
- Toggle all bits to the left of the first 1 from
the right - Example
- Number
- 1s Comp.
OR
1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
1
1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0
0
0
0
1
0
1
0
23Negative Numbers
- Computers Represent Information in 0s and 1s
- and - signs have to be represented in 0s
and 1s - 3 Systems
- Signed Magnitude
- 1s Complement
- 2s Complement
- All three use the left-most bit to represent the
sign - 0 ? positive
- 1 ? negative
24Signed Magnitude Representation
- Magnitude is magnitude, does not change with sign
- (3)10 ? ( 0 0 1 1 )2
- (-3)10 ? ( 1 0 1 1 )2
- Cant include the sign bit in Addition
S
Magnitude (Binary)
Sign
Magnitude
0 0 1 1 ? (3)10 1 0 1 1 ? (-3)10
1 1 1 0 ? (-6)10
251s Complement Representation
- Positive numbers are represented in Binary
- Negative numbers are represented in 1s Comp.
- (3)10 ? (0 011)2
- (-3)10 ? (1 100)2
- There are 2 representations for 0
- (0)10 ? (0 000)2
- (-0)10 ? (1 111)2
0
Magnitude (Binary)
1
Code (1s Comp.)
261s Complement Range
- 4-Bit Representation
- 24 16 Combinations
- - 7 Number 7
- -231 Number 23 - 1
- n-Bit Representation
- -2n-11 Number 2n-1 - 1
272s Complement Representation
- Positive numbers are represented in Binary
- Negative numbers are represented in 2s Comp.
- (3)10 ? (0 011)2
- (-3)10 ? (1 101)2
- There is 1 representation for 0
- (0)10 ? (0 000)2
- (-0)10 ? (0 000)2
0
Magnitude (Binary)
1
Code (2s Comp.)
1s Comp. 1 1 1 1
1 1 0 0 0 0
282s Complement Range
- 4-Bit Representation
- 24 16 Combinations
- - 8 Number 7
- -23 Number 23 - 1
- n-Bit Representation
- -2n-1 Number 2n-1 - 1
29Number Representations
30Binary Subtraction Using 1s Comp. Addition
- Change Subtraction to Addition
- If Carry 1then add it to theLSB, and the
resultis positive(in Binary) - If Carry 0then the resultis negative(in
1s Comp.)
(5)10 (6)10
(5)10 (1)10
(5)10 (-6)10
(5)10 (-1)10
0 1 0 1
0 1 0 1
1 0 0 1
1 1 1 0
0 1 1 1 0
0 0 1 1
1
1 1 1 0
0 1 0 0
4
- 1
31Binary Subtraction Using 2s Comp. Addition
- Change Subtraction to Addition
- If Carry 1ignore it, and the result is
positive(in Binary) - If Carry 0then the resultis negative(in
2s Comp.)
(5)10 (6)10
(5)10 (1)10
(5)10 (-6)10
(5)10 (-1)10
0 1 0 1
0 1 0 1
1 0 1 0
1 1 1 1
0 1 1 1 1
1 0 1 0 0
- 1
4
32Binary Codes
- Group of n bits
- Up to 2n combinations
- Each combination represents an element of
information - Binary Coded Decimal (BCD)
- Each Decimal Digit is represented by 4 bits
- (0 9) ? Valid combinations
- (10 15) ? Invalid combinations
33BCD Addition
- One decimal digit one decimal digit
- If the result is 1 decimal digit ( 9 ), then it
is a simple binary addition - Example
- If the result is two decimal digits ( 10 ),
then binary addition gives invalid combinations - Example
5 3 8
0 1 0 1 0 0 1 1 1 0 0 0
5 5 1 0
0 1 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0
34BCD Addition
- If the binary resultis greater than 9,correct
the result byadding 6
5 5 1 0
0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0
0 0 0 1 0 0 0 0
Multiple Decimal Digits
Two Decimal Digits
3 5 1
0 0 1 1
0 1 0 1
0 0 0 1
35Gray Code
- One bit changes fromone code to the nextcode
- Different than Binary
36ASCII Code
- American Standard Code for Information Interchange
37Error Detecting Codes
- Parity
- One bit added to a group of bits to make the
total number of 1s (including the parity bit)
even or odd - Even
- Odd
- Good for checking single-bit errors
4-bit Example
7-bit Example
1
0
0
1
38Binary Logic
- Operators
- NOT
- If x 0 then NOT x 1
- If x 1 then NOT x 0
- AND
- If x 1 AND y 1 then z 1
- Otherwise z 0
- OR
- If x 1 OR y 1 then z 1
- Otherwise z 0
39Binary Logic
- Truth Tables, Boolean Expressions, and Logic Gates
AND
OR
NOT
z x y x y
z x y
40Logic Signals
- Binary 0 is representedby a low
voltage(range of voltages) - Binary 1 is representedby a high
voltage(range of voltages) - The voltage ranges guardagainst noise
41Switching Circuits
AND
OR
42Homework
- Mano
- Chapter 1
- 1-2
- 1-7
- 1-9
- 1-10
- 1-11
- 1-16
- 1-18
- 1-20
- 1-24(a)
- 1-29
- Write your family name in ASCII with odd parity
- Decode the following ASCII string (with MSB
parity) - 11000011 01101111 11101101 11110000 11000000
01010000 01010011 01010101 11010100 - Is the parity even or odd?
43Homework
44Homework
45Homework
46Homework