Dr. Bassam Kahhaleh - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

Dr. Bassam Kahhaleh

Description:

Magnitude. Sum of 'Bit x Weight' Formal Notation. Groups of bits 4 bits = Nibble. 8 bits = Byte ... Magnitude. Evaluate Magnitude. Evaluate Magnitude. 13 ... – PowerPoint PPT presentation

Number of Views:300
Avg rating:3.0/5.0
Slides: 47
Provided by: drbassam4
Category:

less

Transcript and Presenter's Notes

Title: Dr. Bassam Kahhaleh


1
4241
Digital Logic Design
  • ?. ?????? ????????
  • Dr. Bassam Kahhaleh

2
Chapter 1
4241 - Digital Logic Design
Binary Systems
3
Digital Systems
  • Discrete Data
  • Examples
  • 26 letters of the alphabet (A, B etc)
  • 10 decimal digits (0, 1, 2 etc)
  • Combine together
  • Words are made of letters (University etc)
  • Numbers are made of digits (4241 etc)
  • Binary System
  • Only 0 and 1 digits
  • Can be easily implemented in electronic circuits

4
Decimal Number System
  • Base (also called radix) 10
  • 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
  • Digit Position
  • Integer fraction
  • Digit Weight
  • Weight (Base) Position
  • Magnitude
  • Sum of Digit x Weight
  • Formal Notation

5
1
2
7
4
d2B2d1B1d0B0d-1B-1d-2B-2
(512.74)10
5
Octal Number System
  • Base 8
  • 8 digits 0, 1, 2, 3, 4, 5, 6, 7
  • Weights
  • Weight (Base) Position
  • Magnitude
  • Sum of Digit x Weight
  • Formal Notation

5
1
2
7
4
5 821 812 807 8-14 8-2
(330.9375)10
(512.74)8
6
Binary Number System
  • Base 2
  • 2 digits 0, 1 , called binary digits or bits
  • Weights
  • Weight (Base) Position
  • Magnitude
  • Sum of Bit x Weight
  • Formal Notation
  • Groups of bits 4 bits Nibble
  • 8 bits Byte

1
0
1
0
1
1 220 211 200 2-11 2-2
(5.25)10
(101.01)2
1 0 1 1
1 1 0 0 0 1 0 1
7
Hexadecimal Number System
  • Base 16
  • 16 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,
    C, D, E, F
  • Weights
  • Weight (Base) Position
  • Magnitude
  • Sum of Digit x Weight
  • Formal Notation

1
E
5
7
A
1 16214 1615 1607 16-110 16-2
(485.4765625)10
(1E5.7A)16
8
The Power of 2
Kilo
Mega
Giga
Tera
9
Addition
  • Decimal Addition

1
1
Carry
5
5
5
5

0
1
1
Ten Base ? Subtract a Base
10
Binary Addition
  • Column Addition

1
1
1
1
1
1
1
0
1
1
1
1
61 23
1
1
1
1
0

84
0
0
0
0
1
1
1
(2)10
11
Binary Subtraction
  • Borrow a Base when needed

(10)2
2
1
2
2
2
0
0
0
0
0
1
1
1
0
1
77 23
1
1
1
1
0
-
0
1
0
1
1
1
0
54
12
Binary Multiplication
  • Bit by bit

0
1
1
1
1
0
1
1
0
x
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
1
1
0
1
1
1
0
13
Number Base Conversions
Evaluate Magnitude
Octal (Base 8)
Evaluate Magnitude
Decimal (Base 10)
Binary (Base 2)
Hexadecimal (Base 16)
Evaluate Magnitude
14
Decimal (Integer) to Binary Conversion
  • Divide the number by the Base (2)
  • Take the remainder (either 0 or 1) as a
    coefficient
  • Take the quotient and repeat the division

Example (13)10
Coefficient
Quotient
Remainder
13
/ 2 6
1 a0 1
6
/ 2 3
0 a1 0
3
/ 2 1
1 a2 1
1
/ 2 0
1 a3 1
Answer (13)10 (a3 a2 a1 a0)2 (1101)2
MSB LSB
15
Decimal (Fraction) to Binary Conversion
  • Multiply the number by the Base (2)
  • Take the integer (either 0 or 1) as a coefficient
  • Take the resultant fraction and repeat the
    division

Example (0.625)10
Coefficient
Integer
Fraction
a-1 1
0.625
2 1 . 25
0.25
2 0 . 5 a-2 0
0.5
2 1 . 0 a-3 1
Answer (0.625)10 (0.a-1 a-2 a-3)2
(0.101)2
MSB LSB
16
Decimal to Octal Conversion
Example (175)10
Coefficient
Quotient
Remainder
175
/ 8 21
7 a0 7
21
/ 8 2
5 a1 5
2
/ 8 0
2 a2 2
Answer (175)10 (a2 a1 a0)8 (257)8
Example (0.3125)10
Integer
Fraction
Coefficient
0.3125
8 2 . 5
a-1 2
0.5
8 4 . 0 a-2 4
Answer (0.3125)10 (0.a-1 a-2 a-3)8
(0.24)8
17
Binary - Octal Conversion
  • 8 23
  • Each group of 3 bits represents an octal digit

Example
Assume Zeros
( 1 0 1 1 0 . 0 1 )2
( 2 6 . 2 )8
Works both ways (Binary to Octal Octal to
Binary)
18
Binary - Hexadecimal Conversion
  • 16 24
  • Each group of 4 bits represents a hexadecimal
    digit

Example
Assume Zeros
( 1 0 1 1 0 . 0 1 )2
( 1 6 . 4 )16
Works both ways (Binary to Hex Hex to Binary)
19
Octal - Hexadecimal Conversion
  • Convert to Binary as an intermediate step

Example
( 2 6 . 2 )8
Assume Zeros
Assume Zeros
( 0 1 0 1 1 0 . 0 1 0 )2
( 1 6 . 4 )16
Works both ways (Octal to Hex Hex to Octal)
20
Decimal, Binary, Octal and Hexadecimal
21
Complements
  • 1s Complement (Diminished Radix Complement)
  • All 0s become 1s
  • All 1s become 0s
  • Example (10110000)2
  • ? (01001111)2
  • If you add a number and its 1s complement

1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1
22
Complements
  • 2s Complement (Radix Complement)
  • Take 1s complement then add 1
  • Toggle all bits to the left of the first 1 from
    the right
  • Example
  • Number
  • 1s Comp.

OR
1 0 1 1 0 0 0 0 0 1 0 0 1 1 1 1
1
1 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0
0
0
0
1
0
1
0
23
Negative Numbers
  • Computers Represent Information in 0s and 1s
  • and - signs have to be represented in 0s
    and 1s
  • 3 Systems
  • Signed Magnitude
  • 1s Complement
  • 2s Complement
  • All three use the left-most bit to represent the
    sign
  • 0 ? positive
  • 1 ? negative

24
Signed Magnitude Representation
  • Magnitude is magnitude, does not change with sign
  • (3)10 ? ( 0 0 1 1 )2
  • (-3)10 ? ( 1 0 1 1 )2
  • Cant include the sign bit in Addition

S
Magnitude (Binary)
Sign
Magnitude
0 0 1 1 ? (3)10 1 0 1 1 ? (-3)10
1 1 1 0 ? (-6)10
25
1s Complement Representation
  • Positive numbers are represented in Binary
  • Negative numbers are represented in 1s Comp.
  • (3)10 ? (0 011)2
  • (-3)10 ? (1 100)2
  • There are 2 representations for 0
  • (0)10 ? (0 000)2
  • (-0)10 ? (1 111)2

0
Magnitude (Binary)
1
Code (1s Comp.)
26
1s Complement Range
  • 4-Bit Representation
  • 24 16 Combinations
  • - 7 Number 7
  • -231 Number 23 - 1
  • n-Bit Representation
  • -2n-11 Number 2n-1 - 1

27
2s Complement Representation
  • Positive numbers are represented in Binary
  • Negative numbers are represented in 2s Comp.
  • (3)10 ? (0 011)2
  • (-3)10 ? (1 101)2
  • There is 1 representation for 0
  • (0)10 ? (0 000)2
  • (-0)10 ? (0 000)2

0
Magnitude (Binary)
1
Code (2s Comp.)
1s Comp. 1 1 1 1
1 1 0 0 0 0
28
2s Complement Range
  • 4-Bit Representation
  • 24 16 Combinations
  • - 8 Number 7
  • -23 Number 23 - 1
  • n-Bit Representation
  • -2n-1 Number 2n-1 - 1

29
Number Representations
  • 4-Bit Example

30
Binary Subtraction Using 1s Comp. Addition
  • Change Subtraction to Addition
  • If Carry 1then add it to theLSB, and the
    resultis positive(in Binary)
  • If Carry 0then the resultis negative(in
    1s Comp.)

(5)10 (6)10
(5)10 (1)10
(5)10 (-6)10
(5)10 (-1)10
0 1 0 1
0 1 0 1
1 0 0 1
1 1 1 0
0 1 1 1 0
0 0 1 1
1

1 1 1 0
0 1 0 0
4
- 1
31
Binary Subtraction Using 2s Comp. Addition
  • Change Subtraction to Addition
  • If Carry 1ignore it, and the result is
    positive(in Binary)
  • If Carry 0then the resultis negative(in
    2s Comp.)

(5)10 (6)10
(5)10 (1)10
(5)10 (-6)10
(5)10 (-1)10
0 1 0 1
0 1 0 1
1 0 1 0
1 1 1 1
0 1 1 1 1
1 0 1 0 0
- 1
4
32
Binary Codes
  • Group of n bits
  • Up to 2n combinations
  • Each combination represents an element of
    information
  • Binary Coded Decimal (BCD)
  • Each Decimal Digit is represented by 4 bits
  • (0 9) ? Valid combinations
  • (10 15) ? Invalid combinations

33
BCD Addition
  • One decimal digit one decimal digit
  • If the result is 1 decimal digit ( 9 ), then it
    is a simple binary addition
  • Example
  • If the result is two decimal digits ( 10 ),
    then binary addition gives invalid combinations
  • Example

5 3 8
0 1 0 1 0 0 1 1 1 0 0 0
5 5 1 0
0 1 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0
34
BCD Addition
  • If the binary resultis greater than 9,correct
    the result byadding 6

5 5 1 0
0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0
0 0 0 1 0 0 0 0
Multiple Decimal Digits
Two Decimal Digits
3 5 1
0 0 1 1
0 1 0 1
0 0 0 1
35
Gray Code
  • One bit changes fromone code to the nextcode
  • Different than Binary

36
ASCII Code
  • American Standard Code for Information Interchange

37
Error Detecting Codes
  • Parity
  • One bit added to a group of bits to make the
    total number of 1s (including the parity bit)
    even or odd
  • Even
  • Odd
  • Good for checking single-bit errors

4-bit Example
7-bit Example
1
0
0
1
38
Binary Logic
  • Operators
  • NOT
  • If x 0 then NOT x 1
  • If x 1 then NOT x 0
  • AND
  • If x 1 AND y 1 then z 1
  • Otherwise z 0
  • OR
  • If x 1 OR y 1 then z 1
  • Otherwise z 0

39
Binary Logic
  • Truth Tables, Boolean Expressions, and Logic Gates

AND
OR
NOT
z x y x y
z x y
40
Logic Signals
  • Binary 0 is representedby a low
    voltage(range of voltages)
  • Binary 1 is representedby a high
    voltage(range of voltages)
  • The voltage ranges guardagainst noise

41
Switching Circuits
AND
OR
42
Homework
  • Mano
  • Chapter 1
  • 1-2
  • 1-7
  • 1-9
  • 1-10
  • 1-11
  • 1-16
  • 1-18
  • 1-20
  • 1-24(a)
  • 1-29
  • Write your family name in ASCII with odd parity
  • Decode the following ASCII string (with MSB
    parity)
  • 11000011 01101111 11101101 11110000 11000000
    01010000 01010011 01010101 11010100
  • Is the parity even or odd?

43
Homework
  • Mano

44
Homework
45
Homework
46
Homework
Write a Comment
User Comments (0)
About PowerShow.com