Title: Ulrich Abelein, Mathias Born, Markus Schindler,
1Doping Profile Dependence of the Vertical Impact
Ionization MOSFETs (I-MOS) Performance
- Nano and Giga Challenges in Electronics and
Photonics - NGC 2007
- Phoenix, Arizona, USA
- 16 March 2007
2Overview
- Motivation
- Vertical Impact Ionisation MOSFET (IMOS)
- Device Concept
- Influence of Doping Profiles
- Electrical Characterization
- Summary and Outlook
3Motivation
- Conventional MOSFET
- Subthreshold slope S dVG/d(logID) is diffusion
limited. - ? min S kT/q ln10 60 mV/dec _at_ 300 K
- Minimum static leakage current ILEAK
- ILEAK ID(VT) 10-VT/S
- Shrinking the feature size according to Moores
Law makes a reduction of VT necessary. - ? ILEAK ?
- Solution ? Reducing S below the kT/q limit!
- ?
- Achievable by gate controlled impact ionisation
- ? Impact Ionisation MOSFET (IMOS)
4Device Concept Device Structure
Drain contact
p delta layer
Gate oxide (4.5 nm)
Gate oxide (4.5 nm)
Spacer
Spacer
n Si drain
Gate contact
n Poly
i- Si
i- Si
n Poly
n Si source
Source contact
Schematic drawing of the vertical IMOS (above)
and SIMS profile of the mesa layer stack (left
hand side)
5Device Concept Simulation Results
? p delta barrier lowered by gate field ? High
field between p delta layer and drain causes
impact ionisation
Drain contact
Spacer
Spacer
p delta layer
n Si drain
Gate oxide
Energy in eV
-1
1
-2
0
i- Si
Gate contact
Drain
80
i- Si
n Poly
Distance in nm
VGSVDS0 V VGS0 V VDS2 V VGS VDS2 V
n Si source
0
Source
1010
1020
1030
Ionisation rate in pairs / (cm3?s)
Source contact
Simulations of the electric field and the
ionisation rate in the channel region
6Device Concept Operating Modes
- VDS lt 1.25 V
- ? Conventional MOSFET mode
- 2.2 V gt VDS gt 1.25 V
- ? Impact Ionization Mode
- ? Holes generated by impact ionization charge
the body. - Dynamic lowering of VT!
- VDS gt 2.2 V
- ? Bipolar Mode
- ? Parasitic bipolar transistor contributes to
ID
W 2µm
7Device Concept Operating Modes
- VDS lt 1.25 V
- ? Conventional MOSFET mode
- VDS gt 1.25 V
- ? Beginning of significant impact ionziation
- ? Holes generated by impact ionization charge
the body - ? Dynamic lowering of VT
- ? S is reduced below kT/q
W 2 µm
8Influence of Doping Profiles
- Unintentional changes in doping profiles due to
diffusion! - ? p delta layer doping diffuses into intrinsic
zones! - Diffusion ? ? Sharper delta layer, larger
barrier, higher eelctric fields! - ? Impact Ionization rates ? (at const. VDS)
- ? Lower S due to increased body charge for low
VDS - Diffusion ? ? Lower barrier
- ? Switch on voltage of parasitic bipolar
transistor ? - ? Extremley low S due to current amplification
- ? Hysteresis in input characteristics
9Experimental Results Doping Profiles
- Using 750 C and
- 800 C gate oxide process
- Decreasing of boron diffusion for 750 C
- ? Maximum doping level increased by a factor
of 3 - ? Larger barrier!
10Electrical Characerization Output
Characteristics
- Low thermal budget sample
- ? Impact ionization mode begins at lower
voltage - ? Later transistion to bipolar mode
- ? VDS 2.25 V
- LT sample in Impact Ioniziation mode
- HT sample in bipolar mode
W 2 µm
11Electrical Characerization Input Characteristics
VDS 2.25 V ? LT sample in Impact Ioniziation
mode ? S 4 mV/dec ? No hysteresis!
W 2 µm
12Electrical Characerization Input Characteristics
VDS 2.25 V ? HT sample in bipolar mode ? S
1.06 mV/dec! ? Hysteresis visible ? Gate
controlled switch-off possible!
W 2µm
13Summary and Outlook
- Summary
- Influence of boron diffusion on device
performance was shown - Subthreshold slope of 1.06 mV/dec was shown
- Devcie can be optimized to needs of application
- Very low subthreshold slope with measurable
hysteresis - Low subthreshold slope without any hystersis
- Outlook
- Realization of the p-channel device
- Shrinking device dimensions and reducing supply
voltages