Research - PowerPoint PPT Presentation

About This Presentation
Title:

Research

Description:

Brigantine. COOL 5. The local environment plays a significant role in pattern distortion. ... Brigantine. Use of Measured Antenna Patterns Improved Comparison ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 39
Provided by: sparky5
Category:

less

Transcript and Presenter's Notes

Title: Research


1
Recent Results from the HF Radar Network For
NJSOS NEOS
Josh Kohut Hugh Roarty Scott Glenn, Oscar
Schofield Many Others Coastal Ocean Observation
Lab (COOL)Institute of Marine and Coastal
Sciences (IMCS)Rutgers University
Research http//marine.rutgers.edu/cool
Education http//coolclassroom.org
Public Outreach http//www.thecoolroom.org
2
Loveladies, NJ
New Jersey Installations
Brant Beach, NJ
USCG LSU Wildwood, NJ
3
Number of Radial Current Vectors
4
Ideal (not typical) Setup Nantucket , MA

Transmit Antenna
Receive Antenna
50 meters
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
2001 Summer Experiment
Tuckerton 5 MHz Long-Range CODAR
COOL 1
COOL 2
  • Long-Range and Standard CODAR
  • Thermistors at all 5 locations, spaced at 1 m
    intervals
  • ADCP
  • 1 meter bins
  • Continuously sampled every 5 s
  • 3 hour Centered Average

COOL 3
Brigantine 25 MHz Standard CODAR
COOL 4
COOL 5
11
(No Transcript)
12
Improving HF Radar Surface Current Measurements
with Measured Antenna Beam Patterns
Josh Kohut and Scott Glenn - J. Atmos. Ocean.
Tech., 20, 1303-1316.
  • The local environment plays a significant role
    in pattern distortion.
  • System accuracy improves when the data is
    calibrated wit the measured pattern.
  • When MUSIC uses the measured pattern, velocity
    vectors are more consistently put in the correct
    angular bin.

13
Ideal Pattern, 8.27 cm/s RMS Difference
Measured Pattern, 7.10 cm/s RMS Difference
14
(No Transcript)
15
Intercomparison of an ADCP, Standard and
Long-Range High-Frequency Radar Influence of
Horizontal and Vertical Shear
Hugh Roarty, Josh Kohut, and Scott Glenn
  • Use of Measured Antenna Patterns Improved
    Comparison
  • Decreased Vertical Shear due to Strong
    Stratification Led to Closer ADCP/HF Radar
    Comparisons
  • Differences Between ADCP and HF Radar
    Measurements are shown to Depend on the Strength
    of the Horizontal Shear


16
6 km
Long-Range SeaSonde
2.5 m
BIN 20
BIN 19
BIN 18
5 m
BIN 17
12 m
BIN 16
BIN 15
BIN 14
BIN 13
BIN 12
BIN 11
BIN 10
BIN 9
Bin 16 to 11, entire record RMS Difference 7.2
cm/sec
COOL 5
NTS
17
Long-Range SeaSonde
2.5 m
BIN 19
BIN 20
BIN 16
BIN 18
BIN 19
BIN 15
BIN 17
BIN 18
BIN 14
BIN 16
BIN 17
BIN 13
BIN 15
BIN 16
BIN 12
BIN 14
BIN 15
BIN 11
BIN 13
BIN 14
BIN 10
BIN 12
BIN 13
BIN 9
BIN 12
BIN 11
BIN 10
BIN 9
RMS Difference 6.07 cm/sec
COOL 4
COOL 5
COOL 3
4 km
4 km
NTS
18
CODAR/ADCP Comparisons Sorted by ADCP
Horizontal Shear
ADCP Bin 16 to 11 - RMS difference 7.2 cm/s
19
Temporal Variability of the ADCP RMS Differnece
20
(No Transcript)
21
(No Transcript)
22
Cool 5 (Bin17) vs. Cool 5 ADCP
Raw Velocity
Tidal Velocity
Bin RMS
Bin RMS
1 3.4138 2 2.8113 3 2.2265 4 1.5252 5 0.71017 6 1.
1287 7 1.2052 8 1.1467 9 1.0892 10 0.9149 11 0.703
6 12 0.62108 13 0.70948 14 0.63184 15 0.52554 16 0
.35932 17 0 18 1.7604 19 1.0081 20 2.2608
1 13.671 2 13.948 3 14.189 4 14.411 5 14.651 6 14.
528 7 14.517 8 14.024 9 12.926 10 11.653 11 10.43
12 9.3549 13 7.9883 14 6.2468 15 4.4089 16 2.3032
17 0 18 4.7865 19 9.762 20 13.903
NP122
NP274
23
Cool 5 (Bin17) vs. Cool 3 ADCP
Raw Velocity
Tidal Velocity
Bin RMS
Bin RMS
1 14.139 2 14.571 3 14.747 4 14.411 5 13.782 6 13.
082 7 12.356 8 11.044 9 9.8501 10 8.6627 11 7.7062
12 6.7369 13 6.0721 14 5.3712 15 5.2163 16 10.577
17 14.852 18 21.666 19 17.594 20 17.602
1 4.7085 2 4.1243 3 3.3474 4 2.375 5 1.684 6 1.112
5 7 0.68393 8 0.27787 9 0.37028 10 0.67474 11 0.96
605 12 1.1827 13 1.218 14 1.1994 15 1.4759 16 2.74
54 17 3.5908 18 2.4551 19 5.5286 20 5.4984
NP122
NP274
24
CODAR vs. Cool 5 ADCP (2 pts required)
Raw Velocity
Tidal Velocity
Bin RMS
Bin RMS
1 3.5885 2 2.8348 3 2.0002 4 1.3733 5 1.5896 6 2.4
228 7 2.7752 8 3.034 9 2.9855 10 2.373 11 1.8731 1
2 1.8667 13 1.9329 14 1.7496 15 1.511 16 1.1046 17
0.70644 18 1.3365 19 0.99657 20 2.1046
1 12.725 2 12.863 3 13.086 4 13.318 5 13.619 6 13.
344 7 13.169 8 13.261 9 12.626 10 11.055 11 9.8998
12 8.9065 13 8.1385 14 7.4351 15 6.8603 16 6.0464
17 5.8556 18 7.4992 19 10.791 20 13.82
NP82
25
CODAR vs. Cool 5 ADCP (4 pts Required)
Raw Velocity
Tidal Velocity
Bin RMS
Bin RMS
1 12.655 2 13.016 3 13.597 4 14.117 5 14.733 6 13.
214 7 12.082 8 12.357 9 12.364 10 9.4986 11 7.0517
12 6.0752 13 5.482 14 5.0995 15 4.8628 16 4.7105
17 5.1335 18 8.594 19 12.746 20 13.642
1 2.8037 2 1.6774 3 0.91105 4 0.74422 5 1.5933 6 3
.8889 7 4.5 8 5.004 9 4.6983 10 2.807 11 1.3209 12
1.051 13 1.0825 14 1.0887 15 1.0014 16 0.80063 17
0.80789 18 3.5935 19 4.445 20 7.7683
NP16
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
July 28th to 30th Low Shear August 1st to
3rd High Shear
31
(No Transcript)
32
(No Transcript)
33
RMS Difference 3.0 cm/s
34
RMS Difference 2.78 cm/s
35
(No Transcript)
36
Horizontal Shear between COOL3-Bin 12
and COOL5-Bin 16 6.07 cm/sec
Horizontal Shear between surrounding CODAR
Bins 5.9 cm/s 7.6 cm/s Range
Cell 4 5.7 cm/sec Angular Bin
230 7.2 cm/sec
37
CODAR vs. Cool 5 ADCP (2 pts required)
Raw Velocity
Tidal Velocity
Bin RMS
Bin RMS
1 15.835 2 16.351 3 16.99 4 17.615 5 18.132 6 16.8
79 7 16.868 8 17.351 9 15.962 10 12.416 11 9.5592
12 8.0316 13 6.7406 14 5.7951 15 5.334 16 5.0007 1
7 4.9972 18 8.5758 19 11.451 20 12.07
1 7.3489 2 6.9643 3 6.7689 4 6.4861 5 6.1781 6 4.9
769 7 4.3363 8 3.7274 9 3.3498 10 2.4513 11 1.7429
12 1.3899 13 0.8083 14 0.41202 15 0.29245 16 0.19
996 17 0.36631 18 3.0764 19 1.4955 20 4.3031
NP 25
38
1 hr Mean 2.11 2 pt Mean 4.14 4 pt Mean
4.71
Write a Comment
User Comments (0)
About PowerShow.com