OPTYMALIZACJA%20SIECI%20TELEKOMUNIKACYJNYCH%20%20Michal%20Pi - PowerPoint PPT Presentation

About This Presentation
Title:

OPTYMALIZACJA%20SIECI%20TELEKOMUNIKACYJNYCH%20%20Michal%20Pi

Description:

Wydzial Elektroniki i Technik Informacyjnych. Politechnika ... The rule (SPAR): for each demand d realise the demanded volume hd on its cheapest path(s) ... – PowerPoint PPT presentation

Number of Views:128
Avg rating:3.0/5.0
Slides: 21
Provided by: michal77
Category:

less

Transcript and Presenter's Notes

Title: OPTYMALIZACJA%20SIECI%20TELEKOMUNIKACYJNYCH%20%20Michal%20Pi


1
OPTYMALIZACJA SIECI TELEKOMUNIKACYJNYCHMichal
PióroInstytut Telekomunikacji Wydzial
Elektroniki i Technik InformacyjnychPolitechnika
Warszawskasemestr letni 2003/2004
2
  • Wyklad
  • Michal Pióro (profesor)
  • Andrzej Myslek (prawie doktor)
  • Cwiczenia (audytoryjne)
  • Andrzej Myslek
  • ruszaja w tygodniu nr 4 - 2 godziny tygodniowo
  • Projekt
  • Mateusz Dzida (doktorant PW)
  • Michal Zagozdzon (doktorant PW)
  • rusza w tygodniu nr 6 - 2 godziny tygodniowo

3
  • Literatura podstawowa
  • M. Pióro and D. Medhi
  • Routing, Flow and Capacity Design in
    Communication and Computer Networks
  • Morgan Kaufmann Publishers (Elsevier), April
    2004
  • ISBN 0125571895
  • www.mkp.com (54.95 20 off)

4
  • Siec szkieletowa (core/backbone network)
  • IP/OSPF
  • MPLS
  • IDN
  • SDH
  • WDM

3
1
10
2
Warszawa
8
11
7
6
12
9
5
4
5
Uncapacitated flow allocation problem
  • indices
  • d1,2,,D demands
  • p1,2,,Pd paths for flows realising demand d
  • e1,2,,E links
  • constants
  • hd volume of demand d
  • ?e unit (marginal) cost of link e
  • ?edp 1 if e belongs to path p realising demand
    d, 0 otherwise

6
Uncapacitated flow allocation problem LP
formulation
  • variables
  • xdp flow realizing demand d on path p
  • ye capacity of link e
  • objective minimize F Se ?eye
  • constraints
  • Sp xdp hd d1,2,,D
  • Sd Sp ?edpxdp ? ye e1,2,,E
  • all variables are continuous non-negative

7
Simple flow problem
given capacities hd of all Layer 2 link d - to
be realised by means of flows in Layer 1
Layer 2 demand
demand d with given volume hd
Layer 1 equipment
link e with marginal cost ce and capacity ye
flow xd2
flow xd1
nodes appearing only in Layer 1
8
Example - a solution
demands
x11 15 h1 demand 1 is realised
h1 15
x21 x22 10 h2 demand 2 is realised
h2 10
x31 x32 20 h3 demand 3 is realised
h3 20
flow x21 5
flow x11 15
?2 1
?1 2
?4 1
flow x22 5
?3 1
?5 1
flow x31 5
cost of the network C(y) Se ?eye 85 this is
not an optimal solution - why?
flow x32 15
equipment
9
Example - optimal solution
demand
The rule (SPAR) for each demand d realise the
demanded volume hd on its cheapest path(s)
h1 15
h2 10
h3 20
x11 15 x21 z , x22 10 - z ( 0 z
10 ) x31 20 , x32 0
flow x21 z
flow x11 15
?2 1
?1 2
y1 z y2 25 - z y3 10 - z y4 15 y5
20
?4 1
flow x22 10 - z
?3 1
?5 1
flow x31 20
cost of the network F(y) Se ?eye 70
flow x32 0
equipment
10
Uncapacitated flow allocation problem - MIP
formulation
  • variables
  • xdp flow realising demand d on path p
  • ye capacity of link e
  • objective minimize F Se ?eye
  • constraints
  • Sp xdp hd d1,2,,D
  • Sd Sp ?edpxdp M?ye e1,2,,E
  • all flow variables variables are non-negative and
    all capacity
  • variables are non-negative integers

11
Uncapacitated flow allocation problem - IP
formulation
  • variables
  • xdp flow realising demand d on path p
  • ye capacity of link e
  • objective minimise C Se ?eye
  • constraints
  • Sp xdp hd d1,2,,D
  • Sd Sp?edpxdp M?ye e1,2,,E
  • all variables are non-negative integers

12
Capacitated flow allocation problem
  • indices
  • d1,2,,D demands
  • p1,2,,Pd paths for flows realising demand d
  • e1,2,,E links
  • constants
  • hd volume of demand d
  • ce capacity of link e
  • ?edp 1 if e belongs to path p realising demand
    d, 0 otherwise

13
Capacitated flow allocation problem LP
formulation
  • variables
  • xdp flow realising demand d on path p
  • constraints
  • Sp xdp hd d1,2,,D
  • Sd Sp ?edpxdp ce e1,2,,E
  • flow variables are continuous, non-negative

14
Capacitated flow allocation problem - IP
formulation
  • variables
  • xdp flow realising demand d on path p
  • constraints
  • Sp xdp hd d1,2,,D
  • Sd Sp ?edpxdp ce e1,2,,E
  • flow variables are non-negative integers

15
Node-link formulation
so far we have been using link-path formulation
  • indices
  • d1,2,,D demands
  • v,w1,2,... ,V nodes
  • constants
  • hd volume of demand d
  • s(d), t(d) end-nodes of demand d
  • A(v), B(v) sets of nodes after and before v
  • cvw capacity of link (v,w)

for directed graphs!
16
Node-link formulation
  • variables
  • xdvw ? 0 flow of demand d on link (v,w)
  • constraints
  • hd if v s(d)
  • Sw?A(v) xdvw - Sw?B(v) xdwv 0 if x ?
    s(d),t(d)
  • - hd if x t(d)
  • v1,2,...,V d1,2,,D
  • Sd xdvw ? cvw v,w1,2,,V (v,w) is a link (arc)

17
Shortest Path Routing (IP/OSPF)
  • indices
  • d1,2,,D demands
  • p1,2,,Pd paths for flows realising demand d
  • e1,2,,E links
  • constants
  • hd volume of demand d
  • ce capacity of link e
  • ?edp 1 if e belongs to path p realising demand
    d, 0 otherwise

18
Shortest Path Routing (IP/OSPF)
  • variables
  • we weight (metric) of link e, w (w1,w2,...,wE)
  • xdp(w) flow induced by metric system w on path
    (d,p)
  • constraints
  • Sp xdp(w) hd d1,2,,D
  • Sd Sp ?edpxdp(w) ? ce e1,2,,E
  • w ? W

19
ECMP (Equal Cost Multi-Path) rule
20
Flow allocation - single path allocation
(non-bifurcated flows)
  • variables
  • udp binary flow variable corresponding to demand
    d and path p
  • constraints
  • Sp udp 1 d1,2,,D
  • Sd hd Sp ?edpudj ye e1,2,,E
  • us are binary
Write a Comment
User Comments (0)
About PowerShow.com