Title: OPTYMALIZACJA%20SIECI%20TELEKOMUNIKACYJNYCH%20%20Michal%20Pi
1OPTYMALIZACJA SIECI TELEKOMUNIKACYJNYCHMichal
PióroInstytut Telekomunikacji Wydzial
Elektroniki i Technik InformacyjnychPolitechnika
Warszawskasemestr letni 2003/2004
2- Wyklad
- Michal Pióro (profesor)
- Andrzej Myslek (prawie doktor)
- Cwiczenia (audytoryjne)
- Andrzej Myslek
- ruszaja w tygodniu nr 4 - 2 godziny tygodniowo
- Projekt
- Mateusz Dzida (doktorant PW)
- Michal Zagozdzon (doktorant PW)
- rusza w tygodniu nr 6 - 2 godziny tygodniowo
3- Literatura podstawowa
- M. Pióro and D. Medhi
- Routing, Flow and Capacity Design in
Communication and Computer Networks - Morgan Kaufmann Publishers (Elsevier), April
2004 - ISBN 0125571895
- www.mkp.com (54.95 20 off)
4- Siec szkieletowa (core/backbone network)
- IP/OSPF
- MPLS
- IDN
- SDH
- WDM
3
1
10
2
Warszawa
8
11
7
6
12
9
5
4
5Uncapacitated flow allocation problem
- indices
- d1,2,,D demands
- p1,2,,Pd paths for flows realising demand d
- e1,2,,E links
- constants
- hd volume of demand d
- ?e unit (marginal) cost of link e
- ?edp 1 if e belongs to path p realising demand
d, 0 otherwise
6Uncapacitated flow allocation problem LP
formulation
- variables
- xdp flow realizing demand d on path p
- ye capacity of link e
- objective minimize F Se ?eye
-
- constraints
- Sp xdp hd d1,2,,D
- Sd Sp ?edpxdp ? ye e1,2,,E
- all variables are continuous non-negative
7Simple flow problem
given capacities hd of all Layer 2 link d - to
be realised by means of flows in Layer 1
Layer 2 demand
demand d with given volume hd
Layer 1 equipment
link e with marginal cost ce and capacity ye
flow xd2
flow xd1
nodes appearing only in Layer 1
8Example - a solution
demands
x11 15 h1 demand 1 is realised
h1 15
x21 x22 10 h2 demand 2 is realised
h2 10
x31 x32 20 h3 demand 3 is realised
h3 20
flow x21 5
flow x11 15
?2 1
?1 2
?4 1
flow x22 5
?3 1
?5 1
flow x31 5
cost of the network C(y) Se ?eye 85 this is
not an optimal solution - why?
flow x32 15
equipment
9Example - optimal solution
demand
The rule (SPAR) for each demand d realise the
demanded volume hd on its cheapest path(s)
h1 15
h2 10
h3 20
x11 15 x21 z , x22 10 - z ( 0 z
10 ) x31 20 , x32 0
flow x21 z
flow x11 15
?2 1
?1 2
y1 z y2 25 - z y3 10 - z y4 15 y5
20
?4 1
flow x22 10 - z
?3 1
?5 1
flow x31 20
cost of the network F(y) Se ?eye 70
flow x32 0
equipment
10Uncapacitated flow allocation problem - MIP
formulation
- variables
- xdp flow realising demand d on path p
- ye capacity of link e
- objective minimize F Se ?eye
-
- constraints
- Sp xdp hd d1,2,,D
- Sd Sp ?edpxdp M?ye e1,2,,E
- all flow variables variables are non-negative and
all capacity - variables are non-negative integers
11Uncapacitated flow allocation problem - IP
formulation
- variables
- xdp flow realising demand d on path p
- ye capacity of link e
- objective minimise C Se ?eye
-
- constraints
- Sp xdp hd d1,2,,D
- Sd Sp?edpxdp M?ye e1,2,,E
- all variables are non-negative integers
12Capacitated flow allocation problem
- indices
- d1,2,,D demands
- p1,2,,Pd paths for flows realising demand d
- e1,2,,E links
- constants
- hd volume of demand d
- ce capacity of link e
- ?edp 1 if e belongs to path p realising demand
d, 0 otherwise
13Capacitated flow allocation problem LP
formulation
- variables
- xdp flow realising demand d on path p
- constraints
- Sp xdp hd d1,2,,D
- Sd Sp ?edpxdp ce e1,2,,E
- flow variables are continuous, non-negative
14Capacitated flow allocation problem - IP
formulation
- variables
- xdp flow realising demand d on path p
- constraints
- Sp xdp hd d1,2,,D
- Sd Sp ?edpxdp ce e1,2,,E
- flow variables are non-negative integers
15Node-link formulation
so far we have been using link-path formulation
- indices
- d1,2,,D demands
- v,w1,2,... ,V nodes
- constants
- hd volume of demand d
- s(d), t(d) end-nodes of demand d
- A(v), B(v) sets of nodes after and before v
- cvw capacity of link (v,w)
for directed graphs!
16Node-link formulation
- variables
- xdvw ? 0 flow of demand d on link (v,w)
- constraints
- hd if v s(d)
- Sw?A(v) xdvw - Sw?B(v) xdwv 0 if x ?
s(d),t(d) - - hd if x t(d)
-
- v1,2,...,V d1,2,,D
- Sd xdvw ? cvw v,w1,2,,V (v,w) is a link (arc)
17Shortest Path Routing (IP/OSPF)
- indices
- d1,2,,D demands
- p1,2,,Pd paths for flows realising demand d
- e1,2,,E links
- constants
- hd volume of demand d
- ce capacity of link e
- ?edp 1 if e belongs to path p realising demand
d, 0 otherwise
18Shortest Path Routing (IP/OSPF)
- variables
- we weight (metric) of link e, w (w1,w2,...,wE)
- xdp(w) flow induced by metric system w on path
(d,p) - constraints
- Sp xdp(w) hd d1,2,,D
- Sd Sp ?edpxdp(w) ? ce e1,2,,E
- w ? W
19ECMP (Equal Cost Multi-Path) rule
20Flow allocation - single path allocation
(non-bifurcated flows)
- variables
- udp binary flow variable corresponding to demand
d and path p -
- constraints
- Sp udp 1 d1,2,,D
- Sd hd Sp ?edpudj ye e1,2,,E
- us are binary