Multilinear NC1 ? Multilinear NC2 - PowerPoint PPT Presentation

About This Presentation
Title:

Multilinear NC1 ? Multilinear NC2

Description:

(no high powers of variables) ... circuits: strong subclass of circuits (contains other classes) ... formula for f is of size. multilinear NC1 multilinear NC2 ... – PowerPoint PPT presentation

Number of Views:46
Avg rating:3.0/5.0
Slides: 20
Provided by: raz66
Category:

less

Transcript and Presenter's Notes

Title: Multilinear NC1 ? Multilinear NC2


1
Multilinear NC1 ? Multilinear NC2
  • Ran Raz
  • Weizmann Institute

2
  • Arithmetic Circuits (and Formulas)
  • Field F
  • Variables X1,...,Xn
  • Gates
  • Every gate in the circuit computes
  • a polynomial in FX1,...,Xn
  • Example (X1 X1) (X2 1)

3
  • Classes of Arithmetic Circuits
  • NC1 Size poly(n) Degree poly(n)
  • Depth O(log n)
  • (poly-size formulas)
  • NC2 Size poly(n) Degree poly(n)
  • Depth O(log2n)
  • P Size poly(n) Degree poly(n)

4
  • Valiant Skyum Berkowitz Rackoff
  • Arithmetic NC2 Arithmetic P
  • H poly-size arithmetic circuit !
  • quasipoly-size arithmetic formula
  • Outstanding open problem
  • Arithmetic NC1 ? Arithmetic NC2
  • Are arithmetic formulas weaker
  • than arithmetic circuits ?

5
  • Multilinear Circuits
  • NW
  • Every gate in the circuit computes
  • a multilinear polynomial
  • Example (X1 X2) (X2 X3)
  • (no high powers of variables)

6
  • Motivation
  • 1) For many functions, non-multilinear circuits
    are very counter-intuitive
  • 2) For many functions, most (or all) known
    circuits are multilinear
  • 3) Multilinear polynomials interesting subclass
    of polynomials
  • 4) Multilinear circuits strong subclass of
    circuits (contains other classes)
  • 5) Relations to quantum circuits Aaronson

7
  • Previous Work
  • NW 95 Lower bounds for a subclass of constant
    depth multilinear circuits
  • Nis, NW, RS Lower bounds for other subclasses
    of multilinear circuits
  • R 04 Multilinear formulas for Determinant and
    Permanent are of size
  • Aar 04 Lower bounds for multilinear formulas
    for other functions

8
  • Our Result
  • Explicit f(X1,...,Xn), with coeff.
  • in 0,1, s.t., over any field
  • 1) 9 poly-size NC2 multilinear circuit for f
  • 2) Any multilinear formula for f is of size

multilinear NC1 ? multilinear NC2
9
  • Partial Derivatives Matrix Nis
  • f a multilinear polynomial over
  • y1,...,ym z1,...,zm
  • P set of multilinear monomials in
  • y1,...,ym. P 2m
  • Q set of multilinear monomials in
  • z1,...,zm. Q 2m

10
  • Partial Derivatives Matrix Nis
  • f a multilinear polynomial over
  • y1,...,ym z1,...,zm
  • P set of multilinear monomials in
  • y1,...,ym. P 2m
  • Q set of multilinear monomials in
  • z1,...,zm. Q 2m
  • M Mf 2m dimensional matrix
  • For every p 2 P, q 2 Q,
  • Mf(p,q) coefficient of pq in f

11
  • Example
  • f(y1,y2,z1,z2) 1 y1y2 - y1z1z2
  • Mf

1 0 0 0
0 0 0 -1
0 0 0 0
1 0 0 0
1
y1
y2
y1y2
1 z1 z2 z1z2
12
  • Partial Derivatives Method N,NW
  • Nis If f is computed by a noncommutative
    formula of size s then Rank(Mf) poly(s)
  • NW,RS The same for other classes of formulas
  • Is the same true for multilinear formulas ?

13
  • Counter Example
  • Mf is a permutation matrix
  • Rank(Mf) 2m

14
  • We Prove
  • Partition (at random) X1,...,X2m
  • ! y1,...,ym z1,...,zm
  • If f has poly-size multilinear
  • formula, then (w.h.p.)

If for every partition Rank(Mf)2m then any
multilinear formula for f is of
super-poly-size ( )
15
  • High-Rank Polynomials
  • Define f(X1,..,X2m) is High-Rank
  • if for every partition Rank(Mf)2m

f is High-Rank ! any multilinear formula
for f is of super-poly-size
16
  • Our Result Step 1
  • Explicit f(X1,..,X2m) over C, s.t.
  • 1) 9 poly-size NC2 multilinear circuit for f
  • 2) f is High-Rank
  • (coefficients different than 0,1)
  • (We use algebraicly independent
  • constants from C)

17
  • Our Result Step 2
  • Explicit f(X1,..,X2m,X1,..,Xr), with
  • coeff. in 0,1, and rpoly(m), s.t.
  • (over any field)
  • 1) 9 poly-size NC2 multilinear circuit for f
  • 2) a1,..,ar algeb. independent !
    f(X1,..,X2m,a1,..,ar) is High-Rank

18
  • Our Result Step 3
  • If F is a finite field take F ½ G
  • of infinite transcendental dimension
  • (G contains an infinite number of
  • algeb. independent elements)
  • Step 2 ! lower bound over G
  • ! lower bound over F

19
The End
Write a Comment
User Comments (0)
About PowerShow.com