Successes%20and%20problems%20of%20chiral%20soliton%20approach%20to%20exotic%20baryons - PowerPoint PPT Presentation

About This Presentation
Title:

Successes%20and%20problems%20of%20chiral%20soliton%20approach%20to%20exotic%20baryons

Description:

KIAS-Hanyang Joint Workshop on. Multifaceted Skyrmions and Effective Field Theory ... Opal, Aleph, Delphi (LEP) BES (Beijing) CDF, Hyper-CP (Fermilab), E690. BaBar ... – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 53
Provided by: michal167
Category:

less

Transcript and Presenter's Notes

Title: Successes%20and%20problems%20of%20chiral%20soliton%20approach%20to%20exotic%20baryons


1
Successes and problems of chiral soliton
approach to exotic baryons
Michal Praszalowicz - Jagellonian
University Kraków, Poland
  • KIAS-Hanyang Joint Workshop on
  • Multifaceted Skyrmions and Effective Field Theory
  • October 25 - 27, 2004

2
What will happen to this entry in PDG?
3
Experimental evidence forstrange baryon ?
Final state
K n
K0 p
K0 p ?
light ? is predicted in chiral models typical
QM value is 1700 - 1800 MeV
4
Do we see ? at all ?
  • Experiments that do not see ?
  • HERA-B, H1
  • STAR PHENIX (RHIC) - ?
  • Opal, Aleph, Delphi (LEP)
  • BES (Beijing)
  • CDF, Hyper-CP (Fermilab), E690
  • BaBar
  • Phase shifts from old K-scattering exps.

mostly high energy inclusive
5
Width
  • Most experiments give only upper limits
  • CLAS (? p) lt 23 MeV
  • DIANA (K Xe) lt 9 MeV
  • However, some other experiments quote errors
  • ZEUS (DIS) 6.1 ? 1.6 ? MeV
  • COSY (p p) 18 ? 4 MeV
  • HERMES (e p) 17 ? 9 ? 3 MeV
  • DUBNA (bubbl.ch.) 16 ? 4 MeV
  • Phase shifts lt 2 MeV

2.0 1.6
6
Spin and parity
spin will be measured by CLAS later this year
1 2
Unknown, in most models S parity -
ChSM, correlated QM, QM with flavor
dep.forces, 1 ? lattice parity - -
uncorrelated QM (but wider), lattice (if at
all), SumRules
7
Antidecuplet
8
NA49 _at_ CERN
9
Spontaneously broken chiral symmetry
constituent quark mass
How does a low-momentum chirally invariant
Lagrangian look like?
however, it is not invariant under chiral
transformation
10
Spontaneously broken chiral symmetry
Lagrangian
is invariant, because one can absorb chiral
rotation into the redefined pseudoscalar meson
fields ?A Chiral symmetry is spontaneously
broken Goldstone bosons are massless
11
Spectrum of the Dirac operator
12
Spectrum of the Dirac operator
13
Spectrum of the Dirac operator
14
Spectrum of the Dirac operator
sea levels energy increases
valence level energy decreases
system stabilzes
15
SU(3) soliton static solution
hedgehog Ansatz
?
16
Soliton in the Chiral Quark Model
from D.I. Diakonov, hep-ph/0009006
sea levels
valence level
Skyrme limit
QM limit
true minimum
17
Chiral Quark Model
constituent quark mass 350 MeV
pions
fermions
integrate out quarks
"Skyrme" Model
only pion fields, kinetic term interaction terms
18
Chiral Quark Model
constituent quark mass 350 MeV
pions
fermions
integrate out quarks
Skyrme Model
only pion fields, kinetic term interaction terms
Soliton in the Skyrme model is stabilizes by the
Sk. term
19
Quantizing SU(3) Skyrmion and ?QM
time-dependent rotation
angular velocities
20
Wave functions analogy with a symmetric top
m - momentum projection on z
k - momentum projection on z'
z
QM textbook Landau, Lipschitz QM 103 ? N
D(J)(?',?,?) m,k - angular momentum projections
z'
mk
y
In SU(3) J R (p,q), m,k
(Y,I,I3) however, because of the constraint not
all k's are allowed but only those which have k
(Y1, I,I3)
y'
x'
x
21
Quantizing SU(3) Skyrmion and ?QM
add small moment of inertia ?
generalized "momenta"
Hamiltonian
constraint for ? ? 0
22
Wave functions and allowed states
B
S
I3
Y
23
Mass formula
O(1) corrections to Mcl do not allow for absolute
mass predictions
octet-decuplet splitting
exotic-nonexotic splittings
known ?
first order perturbation in the strange quark
mass and in Nc
x
24
Mass formula
octet-decuplet splitting
exotic-nonexotic splittings
known ?
first order perturbation in the strange quark
mass and in Nc
x
E. Guadagnini Nucl.Phys.B236 (1984) 35
25
Skyrme model spectrum
symmetry breaking Hamiltonian is too primitive
richer structure is needed
26
go to higher orders in ms
go to higher orders in Nc
27
Yabu-Ando higher orders in ms
H. Yabu, K. Ando, Nucl.Phys.B301 (1988) 601
second order
sensitive to I2
4 free parameters Msol, I1, I2 and ?, but now
I2 contributes to nonexotic splittings
fix ? and then minimize ?2 with respect to
the remaining parameters
GMO YA
GMO YA
28
M.P., Phys. Lett. B575 (2003) 234 and talk at the
Cracow Workshop on Skyrmions and Anomalies,
Mogilany, Poland, 1987, World Scientific
1987, p.112.
threshold
29
Yabu-Ando higher orders in ms
H. Yabu, K. Ando, Nucl.Phys.B301 (1988) 601
second order
M.P., Phys. Lett. B575 (2003) 234 talk at the
Cracow Workshop on Skyrmions and Anomalies,
Mogilany, Poland, 1987, World Scientific 1987,
p.112.
Constraints
30
go to higher orders in ms
go to higher orders in Nc
31
?QM breaking hamiltonian
E. Guadagnini Nucl.Phys.B236 (1984) 35
calculate next-to-leading contributions to H'
equivalent to Guadagnini mass formula
O(Nc)O(1)
O(1) all O(ms)
O(1)
32
?QM breaking hamiltonian
calculate next-to-leading contributions to H'
O(Nc)O(1)
O(1) all O(ms)
O(1)
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305
richer H' no handle on I2 only 2 linear
combinations of parameters ?', ? and ? enter
nonexotic splittings splittings in 10 ? 10
33
?QM breaking hamiltonian
calculate next-to-leading contributions to H'
O(Nc)O(1)
O(1) all O(ms)
O(1)
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305
richer H' no handle on I2 only 2 linear
combinations of parameters ?', ? and ? enter
nonexotic splittings splittings in 10 ? 10
models give I2 0.5 fm 400 MeV -1 M10 1750
MeV M? 1450 MeV
34
Antidecuplet in ?QM
richer H' splittings in 10 ? 10 , still no
handle on I2
fixes I2
Diakonov, Petrov Polyakov Z.Phys A359 (97)
fixed by ??N
?
M10
35
Freedom in ?QM
M.Diakonov, V.Petrov, M.Polyakov, Z.Phys. A359
(1997) 305
NA49
27 -plet
M.M.Pavan, I.I.Strakovsky, R.L.Workman,
R.A.Arndt, PiN Newslett. 16 (2002) 110 T.Inoue,
V.E. Lyubovitskij, T.Gutsche, A.Faessler,
arXivhep-ph/0311275
36
Width
G.S. Adkins, C.R. Nappi, E. Witten, Nucl. Phys.
B228 (1983) 552
operator V has the same structure as axial current
Diakonov, Petrov, Polyakov, Z.Phys A359 (97)
305 Weigel, Eur.Phys.J.A2 (98) 391,
hep-ph/0006619
37
Width in the soliton model
SU(3) relations
? ?
Decuplet decay Antidecuplet decay
In NRQM limit
38
Small Soliton Limit
Diakonov, Petrov, Polyakov, Z.Phys A359 (97)
305 MP, A.Blotz K.Goeke, Phys.Lett.B354415-422,19
95
energy is calculated with respect to the vacuum
in the small soliton limit only valence level
contributes
39
Width
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305
Decuplet decay Antidecuplet decay
In small soliton limit
In reality
lt 15 MeV
40
Width
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305
O(1)
O(1)
? Nc
O(Nc)
?
O(1)
Is this cancellation consistent with large Nc
counting? MP Phys.Lett.B58396-102,2004
In small soliton limit
Decuplet decay Antidecuplet decay
41
  • Three sources of Nc factors
  • quantum Y' Nc/3
  • parametric M, I1,2 Nc
  • combinatorial SU(3) C-G's for arbitrary Nc

42
Wave functions and allowed states
G. Karl, J. Patera, S. Perantonis, Phys. Lett
172B (1986) 49, J. Bijnens, H. Sonoda, M.
Wise, Can. J. Phys. 64 (1986) 1, Z. Dulinski, M.
Praszalowicz, Acta Phys.Pol. B18 (1988) 1157.
43
Width
MP Phys.Lett.B58396-102,2004
44
Width
MP Phys.Lett.B58396-102,2004
MP, T. Watabe, K. Goeke Nucl.Phys.A64749-71,1999
in small soliton limit cancellation takes place
separately in each order in Nc
45
Mass formula
O(Nc)
O(Nc,ms)
unknown corrections O(1)
O(1)
O(Nc)
O(1/Nc)
O(Nc,ms)
O(1,ms)
46
Width
1/5
O(1/Nc2)
O(1)
O(Nc3)
O(1/Nc)
O(1/Nc2)
O(Nc3)
47
Width
chiral limit
nonzero meson masses
48
Matching with the bound state approach
Callan, Klebanov Nucl.Phys.B262365,1985 Nadeau,
Nowak, Rho, VentoPhys.Rev.Lett.572127-2130,1986
Callan, Klebanov , Hornbostel,
Phys.Lett.B202269,1988 Itzhaki, Klebanov,
Quyang, Rastelli, Nucl.Phys.B684264-280,2004
K- is bound K is not bound and has no
smooth limit to rigid rotator
K
?WZ
49
Summary
Collective quantization reproduces known
multiplets Exotics appears in a natural
way Skyrme model indicates that exotics are
light ?QM has some freedom concerning
spectrum states are narrow, cancellation
consistent with Nc Nc counting is wrong for the
widths reason phase space splittings are
O(1) Is rigid rotator valid in this case? No
exotics in bound state approach
50
(No Transcript)
51
Comment on the width arithmetics
Diakonov, Petrov, Polyakov, Z.Phys A359 (97) 305
Jaffe hep-ph/0401187
decreases
width decreases
inverted
In the paper
52
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com