When Least Squares Estimates Do Not Work - PowerPoint PPT Presentation

1 / 42
About This Presentation
Title:

When Least Squares Estimates Do Not Work

Description:

Multiple responses treated in true multivariate way ... Thermally Cracked. Naphtha. Reformat. Straightrun. Name. G. F. E. D. C. B. A. Example 1: Octane Blending ... – PowerPoint PPT presentation

Number of Views:38
Avg rating:3.0/5.0
Slides: 43
Provided by: ildiko1
Category:

less

Transcript and Presenter's Notes

Title: When Least Squares Estimates Do Not Work


1
When Least Squares Estimates Do Not Work
  • Ildiko E. Frank
  • Minitab, Inc.

2
OUTLINE
  • PLS
  • Mixture Design
  • Example 1 Octane Blending
  • Example 2 Plastic Formulation
  • ILS
  • Example 3 Epoxy Adhesive

3
PLS
  • Linear regression model
  • Multiple responses treated in true multivariate
    way
  • Non-least squares, biased estimate of
    coefficients
  • Intermediate results (scores, loadings) for
    exploration
  • Coefficients nonlinear in response
    cross-validation
  • Model with orthogonal predictors has a single
    component
  • Includes least squares model

4
PLS
  • Is a biased estimator - as Ridge, PCR, Stepwise
  • Handles collinearity - as Ridge, PCR
  • Treats responses in true multivariate way as
    none others
  • Calculates intermediate components - as PCR
  • Is nonlinear in response as none others
  • Includes least squares solution - as PCR, Ridge,
    Stepwise

5
PLS
  • PCR PLS
  • Components linear combination linear combination
  • Input X only X and Y
  • Criteria max (var) max(var)max(corr)
  • Meta parameter cross-validation cross-validation
  • Multiple Y no yes

6
PLS

X predictors n rows, p columns Y responses
n rows, r columns T X scores linear comb. with
coeff. W U Y scores linear comb. with coeff.
C m number of components
7
PLS

1. X weight W U X 2. X score T X
W 3. Y weight C T Y 4. Y score U Y
C 5. X loading L T X 6. X residual
X X T L 7. Y residual Y Y T C
8
PLS
  • All predictors in the model
  • Collinear predictors
  • Underdetermined system (less rows than columns)
  • Collinear responses

I. E. Frank, J. H. Friedman A Statistical View
of Some Chemometrics Regression Tools
Technometrics (1993) p 109
9
Mixture Design
  • Components (factors) are proportions of total
    amount
  • Sum of components is constant components
    correlated
  • Special models needed Scheffe and Cox

10
Mixture Design
  • Scheffe Cox
  • linear y S bi xi e y bo S bi xi e
  • S bi ri 0
  • Scheffe bi Cox (bo bi)
  • quad y S bixi S bij xixj e y bo S
    bixi SS bij xixj e
  • Scheffe bi Cox (bo bi bii)
  • Scheffe bij Cox (bij bii bjj)

11
Mixture Design
  • Scheffe effect ei bi S bj / (q-1)
  • Scheffe adjusted effect aei ei rangei
  • Cox effect ei bi / (1 ri)
  • Cox adjusted effect aei ei rangei
  • bi coefficient for ith component
  • rangei (upper bound lower bound) of ith
    component
  • ri reference point ith component proportion
  • q number of components

12
Mixture Design
  • Component Screening
  • Scheffe coefficients do not represent change in
    response
  • Scheffe component effect depends on all
    coefficients
  • Cox coefficients are directly interpretable
  • Component effects must be adjusted with range

13
Mixture Design
Scheffe Y 1A 2B 3C Cox Y -2
-1A 0B 1C
14
Example 1 Octane Blending
John Cornell Experiments with Mixtures p 249
15
Example 1 Octane Blending
  • Components and response correlation
  • A B C D E
    F G
  • B 0.104
  • C 1.000 0.101
  • D 0.371 -0.537 0.374
  • E -0.548 -0.293 -0.548 -0.211
  • F -0.805 -0.191 -0.805 -0.646 0.463
  • G 0.603 -0.590 0.607 0.916 -0.274 -0.656
  • Y -0.838 -0.071 -0.838 -0.707 0.494 0.985
    -0.741

16
Example 1 Octane Blending
R-sq 0.99 R-sq(pred) 0.95
17
Example 1 Octane Blending
18
Example 1 Octane Blending
19
Example 1 Octane Blending
20
Example 1 Octane Blending
21
Example 1 Octane Blending
22
Example 1 Octane Blending
Conclusions 1. LS coefficients / effects for
highly correlated components cannot be
interpreted, trace plot is misleading 2. PLS
biased away from high variance solutions 3. PLS
score plot helps visualizing the design space 4.
PLS loading and biplots indicate important
components 5. PLS model leads to conclusion
reached in several iterations in literature most
important component is F
23
Example 2 Plastic Formulation
John Cornell Experiments with Mixtures p 500
24
Example 2 Plastic Formulation
Response correlation
Tensile Tensile Flexural Flexural
Strength Modulus Strength Modulus Tensile
Strength Tensile Modulus 0.855 Flexural
Strength 0.995 0.875 Flexural Modulus
0.866 0.992 0.881 Warp
0.910 0.871 0.900
0.915
25
Example 2 Plastic Formulation
  • PLS Cox
  • Tensile Tensile Flexural
    Flexural Warp
  • Strength Modulus Strength
    Modulus
  • Constant 255.375 1008.63 260.508
    743.958 428.183
  • Resin -150.000 -930.00 -152.667
    -666.667 -348.667
  • Glass Fibers 442.000 1204.00 397.333
    941.333 895.333
  • Microspheres -292.000 -274.00 -244.667
    -274.667 -546.667
  • R-sq 98.2 98.5 98.0 95.9
    89.0
  • R-sq Pred 93.3 93.4 90.1 83.7
    52.4

26
Example 2 Plastic Formulation
X
Y
27
Example 2 Plastic Formulation
X
Y
Cornell Moduli increase with increasing
microspheres ??
28
Example 2 Plastic Formulation
Glassfibers positive effect Resin negative
effect Microspheres questionable effect
29
Example 2 Plastic Formulation
TStrength
FStrength
TModulus
FModulus
30
Example 2 Plastic Formulation
  • Conclusions
  • PLS score plot displays multiple response fit
  • 2. PLS biplot indicates that increasing
    Glassfiber increases all responses and increasing
    Resin or Microspheres decreases all responses
  • 3. PLS plots confirm contour and trace plot
    findings contradicting literature

31
ILS
  • Motivation
  • PLS model includes all predictors
  • PLS does not result in variable selection
  • For better interpretation simpler components
    needed
  • Solution
  • Different assumption for biasing schema
  • Similar to factor rotation, i. e. emphasize large
    weights
  • Continuum from PLS to Stepwise

32
ILS
  • PLS ILS
  • Predictors all in some in
  • Parameters of components of components
  • of non-zero W
  • Stepwise not included included

33
ILS
  • Algorithm
  • Calculate a component
  • Rank X weights according to absolute values
  • Set weights to zero for predictors with smallest
    ranks
  • Cross-validate number of components and number of
    non-zero weights

I. E. Frank Intermediate Least Squares
Regression Method Chemolab (1987) p 233
34
Example 3 Epoxy Adhesive
  • Design 24 two-level factors
  • (e.g. curing agent, temperature, applied
    stretch)
  • Plackett Burman design 28 runs
  • Supersaturated design (half PB) 14 runs
  • Response adhesion
  • Goal select relevant factors to maximize
    adhesion
  • Williams, K. R (1968) Rubber Age
  • Lin, D. K. J. (1993) Technometrics
  • Wu, C. F. J. and Hamada M. (2000) Experiments
    p 373

35
Example 3 Epoxy Adhesive
  • Plackett-Burman design
  • Factors 13 and 16 are the same
  • Orthogonal factors PLS(1) LS
  • R-sq 0.94 R-sq(pred) 0.0
  • P value lt 0.05 only for factors 15 and 20
  • Regression p 0.151

36
Example 3 Epoxy Adhesive
  • ILS on Plackett-Burman design
  • Comp Variables R-sq R-sq(pred)
  • 1 non-zero
  • 1 15 36 26
  • 2 15 20 48 35
  • 3 15 17 20 57 42
  • 4 4 15 17 20 64 46
  • 5 4 15 17 20 22 69 49
  • 2 non-zero
  • 1 15 20 48 35
  • 2 4 15 17 20 64 46
  • 3 non-zero
  • 1 15 17 20 57 42

37
Example 3 Epoxy Adhesive
  • Half fraction of PB design, fraction 1
  • PLS (4) R-sq 100 R-sq(pred) 7
  • Half fraction of PB design, fraction 2
  • PLS(4) R-sq 100 R-sq(pred) 29

38
Example 3 Epoxy Adhesive
Fractions are different !
39
Example 3 Epoxy Adhesive
  • ILS on half fraction (1) of PB design
  • Comp Variables R-sq R-sq(pred)
  • 1 non-zero
  • 1 15 63 50
  • 2 12 15 74 56
  • 3 12 15 20 87 71
  • 4 4 12 15 20 95 85
  • 5 4 10 12 15 20 97 88
  • 2 non-zero
  • 1 15 17 69 53
  • 2 8 12 15 17 79 49
  • 3 non-zero
  • 1 2 15 17 74 53

40
Example 3 Epoxy Adhesive
  • ILS on half fraction (2) of PB design
  • Comp Variables R-sq R-sq(pred)
  • 1 non-zero
  • 1 4 36 13
  • 2 4 22 55 27
  • 3 4 22 23 74 49
  • 4 4 18 22 23 82 55
  • 5 4 18 22 23 24 88 60
  • 2 non-zero
  • 1 2 4 49 20
  • 2 2 4 20 23 74 47
  • 3 non-zero
  • 1 2 4 20 63 27

41
Example 3 Epoxy Adhesive
  • Conclusions
  • 1. For orthogonal factors the only model is
    PLS(1) LS
  • 2. R-sq is not a realistic measure of model
    quality
  • 3. Variable selection with ILS includes stepwise
    models
  • 4. Literature is over-optimistic about
    supersaturated designs

42
Summary
  • PLS is a useful alternative to LS in DOE analysis
  • PLS outperforms LS in case of high collinearity
  • PLS can calculate Cox models for mixture designs
  • PLS works with underdetermined (supersaturated) X
  • PLS takes advantage of collinear responses
  • PLS offers various graphical exploratory tools
  • ILS, extension of PLS, results in variable
    selection
Write a Comment
User Comments (0)
About PowerShow.com