Simple stochastic models 1 - PowerPoint PPT Presentation

About This Presentation
Title:

Simple stochastic models 1

Description:

p probability of success. P(k successes in n trials) = nCk pk ... Joint probability distribution. PXY(X=i, Y=k) = pik. Two dimensional generating function: ... – PowerPoint PPT presentation

Number of Views:22
Avg rating:3.0/5.0
Slides: 28
Provided by: pola4
Category:

less

Transcript and Presenter's Notes

Title: Simple stochastic models 1


1
Simple stochastic models 1
2
Random variation 1
  • Genetic, physiological
  • Environmental
  • Measurement error
  • Random sampling

3
Random variation 2
  • Random variability as nuisance
  • Random variability of primary interest

4
Terminology
  • Trial
  • Sample space
  • Event
  • Probability
  • Random variable

5
Discrete random variable X
  • Takes values
  • x0, x1, x2, .
  • with corresponding probabilities P(Xxk)pk
  • p0, p1, p2,
  • p0 p1 p2 1

6
Discrete - integer random variable X
  • Takes values
  • 0, 1, 2, .
  • with corresponding probabilities P(Xk)pk
  • p0, p1, p2,
  • p0 p1 p2 1

7
Mean and variance of discrete random variable
Mean
Variance
8
Binomial Distribution (Bernoulli trials)
  • n number of trials
  • p probability of success
  • P(k successes in n trials) nCk pk (1-p)n-k

9
Binomial distribution
  • X binomial(n,p)
  • E(X) n p
  • V(X) n p (1 p )

10
n 10, p 0.5
0.3
0.25
0.2
P(Xk)
0.15
0.1
0.05
0
0
1
2
3
4
5
6
7
8
9
10
k
11
Poisson distribution
  • X poisson(?)
  • k number of events

E(X) ?, V(X) ?
12
? 5
0.18
0.16
0.14
0.12
P(Xk)
0.1
0.08
0.06
0.04
0.02
0
0
2
4
6
8
10
12
14
16
18
20
k
13
  • When number of Bernoulli trials n is large, and
    probability of success p is small, the
    distribution of number of successes becomes
    Poisson.

14
Examples
  • 30 of women in Germany are smokers. We take a
    random (representative) sample of 20 women. The
    distribution of number of smokers among them is
  • X binomial(20,0.3)

15
  • Probability that an accident leading to injury
    happens in a factory is p0.0001 per day. Number
    of accidents X over a ten year period (n3650) is
    Poisson, XPoisson(?), with
  • ? np 0.365

16
Generating function of discrete - integer random
variables
  • Discrete - integer random variable
  • X 0, 1, 2, .
  • p0, p1, p2,
  • Generating function
  • P(s) p0 s p1 s2 p2

17
Properties
  • P(1) 1
  • P(1) E(X)
  • P(1) EX(X-1)

18
Binomial and Poisson distrib.
Binomial X binomial(n,p), q1-p
Poisson X Poisson(? )
19
Continuity theorem for generating functions
20
Two dimensional discrete integer random
variables
  • Joint probability distribution
  • PXY(Xi, Yk) pik
  • Two dimensional generating function

Marginal distributions PX(s)PXY(s,1)
PY(s)PXY(1,s)
21
Independent discrete integer random variables
  • X PX(Xi) pi
  • Y PY(Yk) pk
  • PXY(Xi, Yk) pi pk

22
Sum
  • PXY(Xi, Yk) pik
  • Z X Y

23
Expectation and variance of sums of independent
random variables
  • E(XY) E(X) E(Y)
  • X, Y - independent
  • V(XY) V(X) V(Y)

24
Sum
  • Z X Y
  • PZ(s) PXY(s,s)
  • X,Y independent
  • PZ(s) PX(s) PY(s)

25
Example
  • X1 binomial(1,p) (one Bernoulli trial)
  • Xn binomial(n,p)
  • PX1(s)qsp
  • PXn(s)(qsp)n

26
Example
  • X Poisson(?), YPoisson(?)
  • ZXY
  • PZ(s) PX(s) PY(s)

Z Poisson(??)
27
Can we generalize generating function method to
non integer discrete r.v. ?
  • x0, x1,
    x2, .
  • P(Xxk)pk p0, p1, p2,
Write a Comment
User Comments (0)
About PowerShow.com