Title: Simple stochastic models 1
1Simple stochastic models 1
2Random variation 1
- Genetic, physiological
- Environmental
- Measurement error
- Random sampling
3Random variation 2
- Random variability as nuisance
- Random variability of primary interest
4Terminology
- Trial
- Sample space
- Event
- Probability
- Random variable
5Discrete random variable X
- Takes values
- x0, x1, x2, .
- with corresponding probabilities P(Xxk)pk
- p0, p1, p2,
- p0 p1 p2 1
-
6Discrete - integer random variable X
- Takes values
- 0, 1, 2, .
- with corresponding probabilities P(Xk)pk
- p0, p1, p2,
-
- p0 p1 p2 1
7Mean and variance of discrete random variable
Mean
Variance
8Binomial Distribution (Bernoulli trials)
- n number of trials
- p probability of success
- P(k successes in n trials) nCk pk (1-p)n-k
9Binomial distribution
-
- X binomial(n,p)
- E(X) n p
- V(X) n p (1 p )
10n 10, p 0.5
0.3
0.25
0.2
P(Xk)
0.15
0.1
0.05
0
0
1
2
3
4
5
6
7
8
9
10
k
11Poisson distribution
- X poisson(?)
- k number of events
E(X) ?, V(X) ?
12? 5
0.18
0.16
0.14
0.12
P(Xk)
0.1
0.08
0.06
0.04
0.02
0
0
2
4
6
8
10
12
14
16
18
20
k
13- When number of Bernoulli trials n is large, and
probability of success p is small, the
distribution of number of successes becomes
Poisson.
14Examples
- 30 of women in Germany are smokers. We take a
random (representative) sample of 20 women. The
distribution of number of smokers among them is - X binomial(20,0.3)
15- Probability that an accident leading to injury
happens in a factory is p0.0001 per day. Number
of accidents X over a ten year period (n3650) is
Poisson, XPoisson(?), with - ? np 0.365
16Generating function of discrete - integer random
variables
- Discrete - integer random variable
- X 0, 1, 2, .
- p0, p1, p2,
- Generating function
- P(s) p0 s p1 s2 p2
17Properties
- P(1) 1
- P(1) E(X)
- P(1) EX(X-1)
18Binomial and Poisson distrib.
Binomial X binomial(n,p), q1-p
Poisson X Poisson(? )
19Continuity theorem for generating functions
20Two dimensional discrete integer random
variables
- Joint probability distribution
- PXY(Xi, Yk) pik
- Two dimensional generating function
Marginal distributions PX(s)PXY(s,1)
PY(s)PXY(1,s)
21Independent discrete integer random variables
- X PX(Xi) pi
- Y PY(Yk) pk
- PXY(Xi, Yk) pi pk
22Sum
23Expectation and variance of sums of independent
random variables
- E(XY) E(X) E(Y)
- X, Y - independent
- V(XY) V(X) V(Y)
24Sum
-
- Z X Y
- PZ(s) PXY(s,s)
- X,Y independent
- PZ(s) PX(s) PY(s)
25Example
- X1 binomial(1,p) (one Bernoulli trial)
- Xn binomial(n,p)
- PX1(s)qsp
- PXn(s)(qsp)n
26Example
- X Poisson(?), YPoisson(?)
- ZXY
- PZ(s) PX(s) PY(s)
Z Poisson(??)
27Can we generalize generating function method to
non integer discrete r.v. ?
- x0, x1,
x2, . - P(Xxk)pk p0, p1, p2,