Perception-motivated High Dynamic Range Video Encoding - PowerPoint PPT Presentation

About This Presentation
Title:

Perception-motivated High Dynamic Range Video Encoding

Description:

Perception-motivated. High Dynamic Range. Video Encoding. Rafal Mantiuk, ... vert. edges. horizontal DCT. vertical decomposition. vertical DCT. I. II. III. IV ... – PowerPoint PPT presentation

Number of Views:50
Avg rating:3.0/5.0
Slides: 34
Provided by: steve1671
Category:

less

Transcript and Presenter's Notes

Title: Perception-motivated High Dynamic Range Video Encoding


1
(No Transcript)
2
Perception-motivated High Dynamic Range Video
Encoding
Rafal Mantiuk, Grzegorz Krawczyk,Karol
Myszkowski, Hans-Peter Seidel
3
High Dynamic Range
4
High vs Low Dynamic Range Video
  • LDR Video
  • Intended for
  • existing displays
  • Relative pixel brightness
  • HDR Video
  • Intended for
  • the human eye
  • Photometric or radiometric units cd/m2,
    Watt/m2sr

5
High Dynamic Range Video
  • Goal Efficient encoding of full dynamic range of
    luminance perceived by the human observer
  • 1st demo

6
Overview
  • HDR Pipeline
  • HDR Video Encoding
  • Luminance Quantization
  • Edge Coding
  • Results
  • vs. MPEG-4
  • vs. OpenEXR
  • Demo Applications

7
Related Work
  • HDR Pipeline

Acquisition ? Storage ? Display
8
Related Work
  • HDR Pipeline

Acquisition ? Storage ? Display
  • Global Illumination
  • HDR Cameras
  • HDRC (IMS Chips)
  • Lars III (Silicon Vision)
  • Autobrite (SMal Camera Technologies)
  • LM9628 (National)
  • Digital Pixel System (Pixim)
  • Technology overview Nayar2003

HDRC IMS Chips
9
Related Work
  • HDR Pipeline

Acquisition ? Storage ? Display
  • Still images
  • Radiance RGBE Ward91
  • OpenEXR Bogart2003
  • logLuv TIFF Ward98
  • HDR JPEG Ward2004
  • Video
  • No video format

10
Related Work
  • HDR Pipeline

Acquisition ? Storage ? Display
  • LDR Displays
  • But Tone Mapping necessary
  • HDR displays start to appear
  • University of British Columbia Seetzen2004

11
HDR Encoding Framework
  • Detail level 1 Input Output

bitstream
LDR
Video encoder
HDR
White MPEG Orange HDR Encoder
12
HDR Encoding Framework
  • Detail level 2 Color Transform

LDR
bitstream
YCrCb
Color
Video
Transform
Encoder
L u'v'
HDR
p
White MPEG Orange HDR Encoder
13
HDR Encoding Framework
  • Detail level 3 Edge Coding

DCT
Variable
Coding
length
LDR
bitstream
Color
Motion
Tran.
Comp.
HDR
Run-
Edge
length
Coding
White MPEG Orange HDR Encoder
14
Encoding of Color
15
Encoding of Color
  • How to represent color data?
  • Floating Points ineffective compression
  • Integers ok, but require quantization
  • How to quantize color data?
  • Quantization errors lt threshold of perception
  • Use uniform color space (Luv, Lab) Ward98
  • Find minimum number of bits
  • Color (uv) 8 bits are enough

16
Encoding of Luminance
  • How to quantize luminance?
  • Gamma correction?
  • Logarithm?

8
6
log(Y)?
4
log Luminance Y
2
0
-2
-4
Integer representation
17
Threshold Versus Intensity
  • Psychophysical measurements
  • The smallest perceivable difference ?Y for a
    certain adaptation level YA
  • tvi Ferwerda96, CIE 12/2.1

?Y
log Threshold ?Y
YA - Adaptation Luminance
log Adaptation Luminance YA
18
Luminance Quantization
Just below threshold of perception
Maximum quantization error
log Luminance Y
Integers Lp
19
Luminance Quantization
Just below threshold of perception
Maximum quantization error
log Luminance Y
10 11 bits are enough
  • Capacity function Ashkihmin02
  • Grayscale Standard Display Function DICOM03

Integers Lp
20
Luminance QuantizationsComparison
2
cvi
11-bit percep. quant.
32-bit LogLuv
0
RGBE
log Contrast Threshold
-2
-4
-2
0
2
4
-4
6
8
log Adapting Luminance
21
Edge Coding
22
Edge Coding Motivation
  • HDR video can contain sharp contrast edges
  • Light sources, shadows
  • DCT coding of sharp contrast may cause high
    frequency artifacts

DCT coding
Edge coding
23
Edge Coding Solution
  • Solution Encode sharp edges in spatial domain,
    the rest in frequency domain

?Run-length encoding
?DCT encoding
24
Edge Coding Algorithm
original
I
horizontal decomposition
edge block horiz. edges
II
horizontal DCT
III
vertical decomposition
edge block vert. edges
IV
vertical DCT
25
Edge Coding Algorithm
original
I
horizontal decomposition
edge block horiz. edges
II
horizontal DCT
III
vertical decomposition
edge block vert. edges
IV
vertical DCT
26
Edge Coding Algorithm
original
I
horizontal decomposition
edge block horiz. edges
II
horizontal DCT
III
vertical decomposition
edge block vert. edges
IV
vertical DCT
27
Edge Coding Algorithm
original
I
horizontal decomposition
edge block horiz. edges
II
horizontal DCT
III
vertical decomposition
edge block vert. edges
IV
vertical DCT
28
Edge Coding Algorithm
original
I
horizontal decomposition
edge block horiz. edges
II
horizontal DCT
III
vertical decomposition
edge block vert. edges
IV
vertical DCT
29
Results
  • 2x size of tone-mapped MPEG-4 video
  • 20-30x saving compared to intra-frame compression
    (OpenEXR)

Bit-stream Size
30
Demo Applications
  • Display dependent rendering
  • Choice of tone-mapping
  • Extended postprocessing

31
Conclusions
  • HDR video compression
  • Modest changes to MPEG-4
  • Lpuv color space
  • Luminance quantization (10-11 bits)
  • Edge coding
  • Applications
  • On-the-fly tone mapping
  • Blooming, motion blur, night vision
  • Tuned for display
  • LDR / HDR Display

32
Acknowledgments
  • HDR Images and Sequences
  • Paul Debevec
  • SpheronVR
  • Jozef Zajac
  • Christian Fuchs
  • Patrick Reuter
  • HDR Camera
  • HDRC(R) VGAx
  • courtesy of IMS CHIPSwww.hdrc.com
  • Comments and help
  • Volker Blanz
  • Scott Daly
  • Michael Goesele
  • Jeffrey Schoner

33
Thank you
http//www.mpi-sb.mpg.de/resources/hdrvideo/
Write a Comment
User Comments (0)
About PowerShow.com