Proofs%20and%20Meanings - PowerPoint PPT Presentation

About This Presentation
Title:

Proofs%20and%20Meanings

Description:

ex : John snores. snores a function snore e t. John an individual entity j of type e. John snores a truth-value, snore(j) of type t. 19/12/2003. Joint Franco ... – PowerPoint PPT presentation

Number of Views:17
Avg rating:3.0/5.0
Slides: 19
Provided by: leco1
Category:

less

Transcript and Presenter's Notes

Title: Proofs%20and%20Meanings


1
Proofs and Meanings
  • Alain Lecomte
  • INRIA-FUTURS (team SIGNES)
  • CLIPS-IMAG (Grenoble)

2
  • Goal 1 to compute sentence meaning
  • similar to
  • Goal 2 to extract a program from a proof

3
example
  • We wish to prove
  • (A ? (B ? C)) ? ((A ? B) ? (A ? C))
  • We have two rules
  • ? -- (A ? B) ? -- A
  • ? -- B
  • ?, A -- B
  • ? -- (A ? B)

4
proof
  • The proof is the following (where ? (A ? (B
    ? C)), (A ? B), A )
  • ?-- A ?-- A ? (B ? C) ? -- A ? -- (A ? B)
  • ?-- (B ? C) ?-- B
  • (A ? (B ? C)), (A ? B), A -- C
  • (A ? (B ? C)), (A ? B) -- (A ? C)
  • (A ? (B ? C)) -- ((A ? B) ? (A ? C))
  • (A ? (B ? C)) ? ((A ? B) ? (A ? C))
  • A proof is a tree made of successive
    appli-cations of inference rules. The roots, that
    are at its base, are the proved theorems.

5
proofs as functions
  • The previous proof transforms a proof of A ? (B
    ? C) into a proof of (A ? B) ? (A ? C),
  • A proof of A ? B is a procedure to transform
    every proof of A into a proof of B
  • If f A ? B and aA then f(a) is a proof of B
  • ? -- f (A ? B) ? -- a A
  • ? -- f(a) B

6
  • similarly
  • If we get a proof of A ? B from a proof b of B
    and a hypothesis x A (by discharging it), then
    the proof of A ? B is a function ?x. b
  • ?, x A -- b B
  • ? -- ?x. b (A ? B)

7
  • ?-- z A ?-- x A ? (B ? C) ? -- z A ?
    -- y (A ? B)
  • ?-- (x z) (B ? C) ?-- (y z) B
  • x  (A ? (B ? C)),y (A ? B), z A -- ((x z)(y
    z)) C
  • x  (A ? (B ? C)), y (A ? B) -- ?z. ((x z)(y
    z)) (A ? C)
  • x  (A ? (B ? C))-- ?y. ?z.((x z)(y z)) ((A ?
    B) ?(A ? C))
  • ?x.?y.?z.((x z)(y z)) (A ? (B ? C)) ?((A ? B) ?
    (A ? C))
  • ?x.?y.?z.((x z)(y z)) combinator S
  • Sabc ac(bc)

8
what happens with language?
  • program meaning
  • ex John snores
  • snores ? a function snore e ? t
  • John ? an individual entity j of type e
  • John snores ? a truth-value, snore(j) of type t

9
the proof
  • j e, snore e ? t -- j e j e, snore e ? t
    -- snore e ? t
  • j e, snore e ? t -- snore(j) t

10
modifier phrasethat John likes
  • ?, xe -- xe ?, xe -- w e ? (e ? t)
  • ?, xe -- (w x) (e ? t) ?, x e --
    v  e
  • ?, x e -- ((w x) v) t
  • ? -- ?x. ((w x) v) (e ? t)
  • with ? v (John) e, w (likes) e ? (e ? t)

11
that
  • that ((e ? t) ? ((e ? t) ? (e ? t)))
  • we get further
  • ?-- ?x.((w x) v)(e?t) ?-- that((e ?t)?((e
    ?t)? (e? t)))
  • ? -- (that ?x.((w x) v)) ((e ? t) ? (e ? t))

12
word meanings
  • John j likes ?s. ?t. ((like s) t)
  • that ?P. ?Q. ?z. (P z) ? (Q z)
  • We obtain as the whole meaning
  • (?P. ?Q. ?z. (P z) ? (Q z)  ?x.(( ?s.?t.((like
    s) t) x) j)), which reduces to 
  • (?P. ?Q. ?z. (P z) ? (Q z)  ?x.(( ?s.?t.((like
    s) t) x) j)) ?
  • (?P. ?Q. ?z. (P z) ? (Q z)  ?x.(?t.((like x) t)
    j)) ?
  • (?P. ?Q. ?z. (P z) ? (Q z)  ?x.((like x) j)) ?
  • (?Q. ?z. (?x.((like x) j) z) ? (Q z) ) ?
  • (?Q. ?z. ((like z) j) ? (Q z))  

13
but words are not only meanings
  • Order not free
  • Peter likes Mary ? Mary likes Peter
  • Resource sensitivity one occurrence of a word is
    used exactly once (words ? formulae)

14
new modus ponens
  • ? -- (A ? B) ? -- A
  • ?, ?-- B
  • A1, A2, , An -- Ak
  • no longer true
  • axiom instead
  • A -- A

15
two arrows
  • ?, A -- B A, ? -- B
  • ? -- B/A ? -- A\B
  • ? -- A\B ? -- A
  • ?, ? -- B
  • ? -- B/A ? -- A
  • ?, ?-- B

16
labelled with strings
  • ?, x A -- ux B xA, ? -- ux B
  • ? -- u_B/A ? -- _u A\B
  • ? -- b A\B ? -- a A
  • ?, ? -- ab B
  • ? -- b B/A ? -- a A
  • ?, ?-- ba B

17
example
  • Lexicon that /that/ (n\n)/(s/np)
  • John /john/ np
  • likes /likes/ (np\s)/np
  • /likes/(np\s)/np-- /likes/(np\s)/np
    unp-- unp
  • /john/np -- /john/np /likes/(np\s)/np,
    unp -- /likes/unp\s
  • /john/np, /likes/(np\s)/np, u np -- /john
    likes/u s
  • /that/ (n\n)/(s/np) -- /that/
    (n\n)/(s/np) /john/np, /likes/(np\s)/np
    -- /john likes/_ s/np
  • /that/(n\n)/(s/np), /john/np, /likes/(np\s)/np
    -- /that john likes/_ n\n

18
problems
  • Non peripheral extraction?
  • the book that John gave _ to Mary
  • Constituency?
  • Non Associative Lambek calculus
  • Structural modalities (Moortgat, 1997)
Write a Comment
User Comments (0)
About PowerShow.com