Title: Prsentation PowerPoint
1Development of a method to assimilate ocean color
satellite data and in situ data within the PISCES
model
Thèse de Abdou Kane Sous la direction
Cyril Moulin (LOCEAN - IPSL)
Sous la co-direction
Sylvie
Thiria ( LOCEAN - IPSL )
Laurent Bopp ( LSCE
- IPSL )
Laboratoire d'Océanographie et Climat
Expérimentation et Analyse numérique ( CNRS IRD
UPMC) Laboratoire des Sciences du Climat et de
l'Environnement (CEA CNRS)
Année 2006 - 2007
2New ocean color data available
SEAWIFS
PISCES
Annual mean Chl
Annual mean frequency of diatom blooms
Bopp et al., 2005
3General description of the method
Goal Optimize the physiological parameters of
the two phytoplankton species simulated in PISCES
using an assimilation technique
Physiological Parameters
PISCES (direct model)
-Production -Grazing -Mortality
Satellite In-situ Observations
Adjustment of the parameters using the adjoint
model ( Yao software)
4ORGANIZATION of a YAO APPLICATION
(semi-generator of adjoint code in c/c)
Intervention of the user
Automatic part
standard code of Yao -
functions - Interpréteur -
generator
Model description
Main file
Generated sources
source Modules
Instruction file
Executable of the application
Results
5Current version of PISCES 1D in YAO
PISCES has been implemented within YAO. This
requires to rewrite the standard fortran code
using the YAO formalism. The current version is
off-line (forced by ORCA simulations) and 1D
(only the vertical diffusion is accounted for).
BATS Station
6Parameters to optimize
- Sensitivity tests through twin experiments
7TWIN experiment
1) A first set of parameters allows to simulate
observations 2) These parameters are
perturbated ---gt Errors in the previous
simulation 3) Minimisation of the errors to
retrieve the initial set of parameters
Xo(initial) Xo(perturbated)
Yobs Ymodel
8Presentation of some preliminary results
2 Observations Dia-CHL and Nano-CHL (similar
to what measures a satellite) 6 parameters to
retrieve production, mortality, grazing rates
for both species assimilation window 1 day 31
vertical levels Perturbation200
Trajectories of the physiological parameters
during the iterative optimization
9Sensitivity tests
2 days
7
Temporal window of assimilation 2 Observations
and 6 parameters 31 vertical levels
Perturbation 50
3 days
138
10Sensitivity tests
Winter
Influence of the initial biogeochemical
conditions 2 Observations 6 parameters 31
vertical levels Perturbation 50 assimilation
window 2 days
Spring (bloom bats)
W S
BATS station
The optimization is very sensitive to initial
conditions
11Sentivity tests
Frequency of observations with a window of 5
days
observations at 5th day
observations at 5th and 15th
days
The number of observations is important (good for
satellite data)
12 Preliminary conclusions , current developments
and overall objectives
- Preliminary conclusions
- - Performances of the assimilation depends on the
initial oceanographic conditions (all parameters
can be retrieved only in specific situations). - - They also depend on the number and frequency of
observations. - Current and future developments
- - Perform more sensitivity tests to better
characterize the performance of our assimilation
technique (number of parameters that can be
retrieve,). - - Use of actual datasets from satellite or from
JGOFS stations instead of simulated
observations (twin experiments) - - Participate to the development of the 3D
version in collaboration with Aymeric Chazottes.
13(No Transcript)
14Echantillonnage de la fonction de coût et
visualisation des trajectoires
Mortalité - Broutage
15Alternatives
-Modéliser grâce à des plusieurs minimisations le
lieu des minima locaux (régressions linéaires
ou non linéaires) -Explorer via monte carlo ou
un recuit simulé autour des régressions avec
comme paramètre de fluctuations l'écart type de
la régression
16Annexes
Broutage1
Broutage0.96
Broutage 1.3