A vertex trigger for LHCb - PowerPoint PPT Presentation

About This Presentation
Title:

A vertex trigger for LHCb

Description:

and the use of the Si vertex detector at the first and second ... looking for a needle in a haystack... ... every 25 ns! 7 Nov 2002. Niels Tuning - Vertex 2002 ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 21
Provided by: tun5
Category:

less

Transcript and Presenter's Notes

Title: A vertex trigger for LHCb


1
A vertex trigger for LHCb
  • Vertex2002
  • Hawaii, 7 Nov 2002
  • Niels Tuning (CERN)
  • (on behalf of LHCb)
  • The trigger for LHCb
  • .. and the use of the Si vertex detector at the
    first and second trigger levels

2
LHCbA Large Hadron Collider Beauty Experiment
for Precision Measurements of CP-Violation and
Rare Decays
  • Colliding beams
  • 25 ns
  • 7 TeV x 7 TeV pp
  • L 2.1032 cm-2 s-1
  • ?(visible) 68 mb
  • ?(pp?b?bX) 0.5 mb
  • ? 1012 b?b / year
  • BR(interesting channels) 10-2 10-9
  • Finding B-mesons
  • High PT decay products
  • Large lifetime ? sec.vertex
  • Invariant mass

A low multiplicity B???- event
LHCb trigger looking for a needle in a
haystack every 25 ns!
3
LHCb Trigger Overview
  • L0 high PT
  • Pile-up Veto, using VETO detector
  • High ET calorimeter objects
  • High PT muons
  • L1 high PT impact parameter
  • High impact parameter tracks, using VELO detector
  • High PT tracks, using TT detector and L0 info
  • L2L3 high PT displaced vertex B-mass PID
  • Use tracking stations and RICH

4
LHCb detector
TT
T1 T2 T3
L0 veto
L1
L0 trigger
5
L0 Pile-up VETO(L0 first trigger level)
  • Purpose remove multiple interactions
  • Nominal luminosity L 2.1032 cm-2 s-1
  • Single Double Triple ? 16 4 1 ? 75
    20 5
  • Why?
  • More difficult to find high IP tracks at L1
  • Reduce bandwidth for L0
  • Detector
  • 2 Si disks (4 sensors)
  • Same sensors as VErtex LOcator (see
    talk J.Palacios)
  • Only R information
  • Use Beetle chip
  • OR of 4 strips comparator
    output of 4 channels
  • ? 1280 channels for 2 disks

6
L0 Pile-up VETO algorithm
  • Calculate vertex for all combinations of 2 points
    a and b.
  • Find highest peak (PV)
  • Remove the hits and find 2nd peak
  • Veto if peakgtthreshold
  • ?(Zvtx) ? 2.8 mm, ?(beam) ? 53 mm

7
L0 Pile-up VETO performance
  • B???- L0 efficiency increase
  • from 50 to 60
  • ? the L0 PT,HADR threshold can be lowered from 4
    GeV to 3.6 GeV
  • Reduce bandwidth and enhance purity
  • Pileup VETO vetoes 15 of all events
  • Vetoed events are more likely to trigger
  • Only small inefficiency for single interactions
    5
  • Reject 30 of multiple interactions (NB

    multiple interactions include inelasticelastic !)

8
L1 trigger vertex trigger(L1 second trigger
level)
  • Implementation
  • Clustering in FPGA on front-end
  • Send data to RU (3-4 GB/s)
  • CPU-farm
  • 300 400 CPUs
  • 2D torus
  • Use scheduler
  • Prototype with 32 CPUs
  • running at 1.24 MHz
  • Buffer depth 1820 events ? Latency 1.65 ms
  • Strategy
  • Find 2d-tracks with R-sensors and reconstruct
    vertex
  • Reconstruct high-impact parameter tracks in 3d
  • Extrapolate to TT through small magnetic field ?
    PT
  • Match track to L0 Muon objects ? PT and PID
  • Select Bevents using impact parameter and PT
    information

9
L1 VErtex LOcator(see talk by Juan Palacios)
  • Si 220 ?m thick, n-on-n,
  • Pitch ? 3798 ?m, R 4092 ?m
  • Sens. area 0.8 cm lt R lt 4.2 cm
  • 21 stations (84 sensors)
  • -17.5 cm lt Z lt 75 cm
  • 170,000 channels

RF foil Very thin beampipe to separate prim.
and sec. vacua
10
L1 input data
Cluster resolution (testbeam) ?14 ?m
  • Velo clusters
  • Clusters are found in FPGAs per groups of 32
    strips.
  • Digital (offline is analog)
  • 1000 clusters
  • 0.1 noise clusters (?200)
  • TT clusters
  • 300 clusters
  • L0 objects
  • ? 3 muons
  • Some calorimeter data

Resolution (?m)
Pitch (?m)
1000 clusters (simulation)
11
L1 track reconstruction
60
  • Look only for R-clusters? 2d RZ-tracks
  • Fast!
  • Find triplets of clusters
  • Combine triplets
  • 98 efficiency for B-tracks

multiplicity
2d tracks in a 90o sector
  • VELO is being redesigned to 45o sectors
  • faster L1 tracking
  • lower noise
  • less 2d tracks

Z vtx histogram
X,Y vtx
12
L1 primary vertex
  • Primary vertex reconstructed with 2d tracks
  • XY information from ? segmentation
  • Flight direction of B is forward ? RZ projection
    of impact parameter contains most information

13
L1 PT information L0
CAL
  • Match VELO track to Muon from L0
  • ? PID
  • ? Momentum
  • Efficient selection of
  • Bs?J/?(??) ?
  • Bd?J/?(??) Ks

VELO
TT
MUON
MAGNET
dp/p4.8
  • Enhance ?-tagged sample

14
L1 algorithm (1)Preliminary
J/? mass
  • Good momentum resolution, cut on J/? mass
  • 60 of events contain both muons
  • lt1 min.bias retention
  • OR require 1 muon with high PT, high IP
  • 75 efficiency
  • 3 retention
  • Work ongoing
  • achieved 90 eff. using neural net

Performance with all event info (except TT)
15
L1 Trigger Tracker
  • TT Tracking station before the magnet
  • Design still under study
  • Si 400 - 500 ?m thick
  • Wide pitch 200 ?m
  • Sensor dimensions 7.8 x 11.0 cm2
  • 4 layers (x,u 30 cm gap v,x)
  • Stereo angle 00, -50, 50, 00
  • To be optimized
  • 836 sensors (7 m2)

16
L1 PT information TT
  • High impact parameter 2d tracks are reconstructed
    in 3d and extrapolated to TT1
  • Magnetic field between VELO and TT
  • ? B dl ? 0.1 Tm
  • Ensures momentum information
  • dp/p 30

17
L1 algorithm (2)Preliminary
  • Get two highest PT tracks, using TT
  • Consider impact parameter and PT of these tracks
  • Look in plane ?IP/?(IP) vs ?PT

18
L1 performance - timing
  • Remember latency 1.7 ms
  • Possibly x32 more.
  • A more flexible system is under study were CPUs
    from DAQ can be used for the TRIGGER and vice
    versa
  • TrackingVertexing lt 20 ms
  • 2007 CPUs x8 faster
  • Optimize algorithmcode
  • ? in the right ballpark!
  • 2d tracking 70
  • Vertex 15
  • 3d tracking (a few) 15

19
L1 performance
  • Efficiency vs retention (Example B???- )
  • Expected overall trigger performance (cumulative)

Bd???-
L1L0 info
L1 output rate (MHz)
40 kHz
L1PT info
Bd???- efficiency
20
Conclusions
  • The pileup-VETO detector efficiently rejects
    multiple primary vertices _at_ 40 MHz at L0
  • The VELO detector reconstructs primary vertices
    at L1 with excellent resolution
  • ?(Zvtx) ? 60 ?m
  • ? high impact parameter tracks can be identified
  • The TT detector - or L0 information - enables
    measuring the momentum of tracks
  • ? Efficient L1 selection algorithms under study
  • Efficiency of 70 (90) for B???- ( B?J/?(??)
    Ks) reachable at 4 minimum bias retention
Write a Comment
User Comments (0)
About PowerShow.com