Title: Finite-Difference (FD) Solutions to Elliptic PDE
1ME6758 Dr. Ferri
Finite-Difference (FD) Solutions to Elliptic PDEs
y
h(b-a)/n
d
k(d-c)/m
c
x
b
a
2Example
a0, b0.5, c0, d0.5, m4, n4
u200x
P1
P2
P3
(3,3)
(2,3)
(1,3)
P4
P5
P6
u0
u200y
(1,2)
(2,2)
(3,2)
P7
P8
P9
(1,1)
(2,1)
(3,1)
wL w1,j
L i (m 1 j )(n-1)
u0
3Example
a0, b0.5, c0, d0.5, m4, n4
A 4 -1 0 -1 0 0 0
0 0 -1 4 -1 0 -1 0
0 0 0 0 -1 4 0 0
-1 0 0 0 -1 0 0 4
-1 0 -1 0 0 0 -1 0
-1 4 -1 0 -1 0 0 0
-1 0 -1 4 0 0 -1 0
0 0 -1 0 0 4 -1 0
0 0 0 0 -1 0 -1 4
-1 0 0 0 0 0 -1 0
-1 4
B 25 50 150 0 0 50
0 0 25
4Example
a0, b0.5, c0, d0.5, m4, n4
5Same example, finer mesh
a0, b0.5, c0, d0.5, m20, n20
6Different Dirichlet BCs
a0, b0.5, c0, d0.5, m20, n20
u50sin(py/0.5)
u0, three sides
7Example with nonzero f(x,y)
Heat source
a0, b0.5, c0, d0.5, m20, n20
Zero temp, all sides
8Example
u200x
u0
a0, b0.5, c0, d0.5, m4, n4
u200y
insulated
9Insulated Lower Edge
No change
A 4 -1 0 -1 0 0 0
0 0 0 0 0 -1 4 -1
0 -1 0 0 0 0 0 0
0 0 -1 4 0 0 -1 0
0 0 0 0 0 -1 0 0
4 -1 0 -1 0 0 0 0
0 0 -1 0 -1 4 -1 0
-1 0 0 0 0 0 0 -1
0 -1 4 0 0 -1 0 0
0 0 0 0 -1 0 0 4
-1 0 -1 0 0 0 0 0
0 -1 0 -1 4 -1 0 -1
0 0 0 0 0 0 -1 0
-1 4 0 0 -1 0 0 0
0 0 0 -2 0 0 4 -1
0 0 0 0 0 0 0 0
-2 0 -1 4 -1 0 0 0
0 0 0 0 0 -2 0 -1 4
B 25 50 150 0 0 50
0 0 25 0 0 0
No change
Shows the effect of insulated BC