Quantile%20Estimation%20for%20Heavy-Tailed%20Data - PowerPoint PPT Presentation

About This Presentation
Title:

Quantile%20Estimation%20for%20Heavy-Tailed%20Data

Description:

Quantile Estimation for Heavy-Tailed Data. 23/03/2000. J. Beirlant ... Burr(1,1,2), k = 200, n = 500. k. 0. 100. 200. 300. 400. 0.0. 0.1. 0.2. 0.3. 0.4 ... – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 47
Provided by: UCS17
Category:

less

Transcript and Presenter's Notes

Title: Quantile%20Estimation%20for%20Heavy-Tailed%20Data


1
Quantile Estimation for Heavy-Tailed Data
  • 23/03/2000
  • J. Beirlant
  • (jan.beirlant_at_wis.kuleuven.ac.be)
  • G. Matthys
  • (gunther.matthys_at_ucs.kuleuven.ac.be)

2
Introduction Notation
  • Contents
  • MODEL SPECIFICATION
  • EXAMPLE SP500s daily returns
  • EXTREME QUANTILE ESTIMATION review of 3 classes
    of methods
  • Blocks method
  • Peaks-over-treshold (POT) method
  • Q(uantile)-based methods
  • IMPROVING Q-BASED METHODS ML-estimator
  • SIMULATION RESULTS
  • CONCLUSIONS

3
  • Notation
  • Sample X1, X2,,Xn from
  • Order statistics
  • Pareto-type / heavy-tailed model
  • Tail decays essentially as a power function
  • with l slowly varying, i.e.
  • Terminology tail index ?
  • extreme value index (EVI)
  • Equivalently for some other slowly varying
    function l

4
  • Examples of heavy-tailed distributions
  • Pareto
  • Students t with degrees of freedom
  • Loggamma
  • Fréchet
  • Not normal, exponential, lognormal, Weibull !

5
  • Heavy-tailed distributions in finance
  • log-returns and exchange rates mostly do exhibit
    heavy tails
  • (often for log-return series)
  • often one is interested in a certain high
    level, which will
  • be exceeded with only a (very) small
    probability
  • search for an extreme quantile of the
    distribution
  • Example
  • 16/10/1987 Risk manager wants to assess the
    risks his investment is exposed to and
    investigates some worst case scenarios
  • estimate fall of the SP500 index that will
    happen only once every 10.000 days (? 40 years)
    on average

6
  • Formally
  • Consider daily falls as random variables X1,
    X2,, Xn, and denote their stationary
    distribution (assuming it exists) with F
  • then we look for quantile x of F that satisfies
  • F(x) 1 - 1/10000.
  • Problem of estimating extreme quantiles xp with
    tail probability p ? (0,1), where p will be
    usually very small
  • 3 classes of methods
  • method of block maxima
  • POT-method
  • Q(uantile)-based methods

7
(No Transcript)
8
(No Transcript)
9
Peaks Over Treshold (POT) Method
  • Limit law for excesses over a high treshold
    (PickandsBalkemade Haan, 1974, 1975)
  • If F is a heavy-tailed distribution with EVI
    ? gt0 and excess
  • distribution
  • then
  • where G?,? denotes the Generalised Pareto
    Distribution

(GPD)
10
  • Thus, for large tresholds u,
  • for ? gt0 and some ? gt 0.
  • Description of the POT method
  • 1 given a sample X1, X2,, Xn, select a high
    treshold u
  • let Nu be the number of exceedances
  • denote the excesses for j1,,Nu
  • 2 fit a GPD G?,? to the excesses Y1,,Yn, e.g.
    with MLE
  • parameter estimates

11
  • 3 as
  • estimate F(x) for x gt u with
  • where Fn is the empirical distribution
    function Fn(u) 1-Nu/n
  • 4 obtain quantile estimates by inverting ()
  • Note in general for each different choice of
    treshold other parameter and quantile estimates !

()
12
(No Transcript)
13
(No Transcript)
14
  • MLEs for GPD-fit of the excesses above treshold
    u 1.5
  • (thus )
  • 95CI (4.9, 10)
  • compare the fitted excess distribution with the
    empirical one

15
(No Transcript)
16
(No Transcript)
17
Q(uantile)-based Methods
  • Hill estimator
  • Pickands estimator
  • Moment estimator
  • MLE for exponential regression model

18
  • Hill estimator
  • Heavy-tailed distribution
  • distribution of log(X)
  • Quantile function
  • Order statistics of X1, X2,,Xn
  • is a consistent estimator for
  • plot

19
(No Transcript)
20
  • slope estimator
  • for k large, denominator 1 Hill estimator
    (1975)
  • for each k (number of order statistics)
    different estimator
  • k small bias small, variance large
  • k large variance small, bias large
  • bias-variance trade-off to select
    optimal k

21
(No Transcript)
22
  • estimating a quantile Q(1-p) with Hill
    estimator
  • extrapolate along fitted line on Pareto quantile
    plot
  • again different estimator for each k
  • bias-variance trade-off needed to select
    optimal k

(Weissman, 1978)
23
(No Transcript)
24
(No Transcript)
25
  • Pickands estimator
  • EVI estimator (1975)
  • derived quantile estimator

26
  • Moment estimator
  • EVI estimator (DekkersEinmahlde Haan, 1989)
  • where
  • derived quantile estimator

27
Q-based estimators for EVI of SP500's falls
0.4
0.3
0.2
0.1
0.0
0
100
200
300
400
k
28
Q-based estimators for 0.0001-quantile of
SP500's falls
11
10
9
8
7
6
5
0
100
200
300
400
k
29
  • ML Method improving Q-based methods
  • (Beirlant, Dierckx, Goegebeur Matthys,
    Extremes, 1999)
  • Hill estimator
  • for 0 lt k lt n, consider log-spacings
  • Assumption on second-order slow variation
  • for x ? ?
  • with ? lt 0 and b(x) ? 0 as x ? ?

30
with uniform (0,1) order statistics
exponential regression model for log-spacings
with f1,k, f2,k,,fk,k i.i.d.
exponential (1)
with f1, f2,,fk i.i.d. exponential (1)
31
Burr(1,1,2), k 200, n 500
32
Q-based estimators for EVI of SP500's falls
0.4
0.3
0.2
0.1
0.0
0
100
200
300
400
k
33
  • quantile estimation try to preserve stability
  • first idea, by analogy to Weissman estimator
  • improvement, including estimated information on
    l

34
Q-based estimators for 0.0001-quantile of
SP500's falls
11
10
9
8
7
6
5
0
100
200
300
400
k
35
(No Transcript)
36
Loggamma(1,2), p 0.0002
100000
50000
10000
5000
0
50
100
150
k
37
Loggamma(2,2), p 0.0002
500
400
300
200
0
50
100
150
k
38
Student's t2, p 0.0002
100
50
0
50
100
150
k
39
Student's t4, p 0.0002
100
50
10
5
0
50
100
150
k
40
Burr(1,1,1), p 0.0002
10000
5000
1000
500
0
50
100
150
k
41
Burr(1,0.5,2), p 0.0002
50000
5000
1000
500
0
50
100
150
k
42
Arch(1), p 0.001, gamma 0.466
40
30
20
9
8
7
6
0
50
100
150
k
43
Arch(1), p 0.001, gamma 0.094
0.07
0.05
0.04
0.03
0.02
0
50
100
150
k
44
Garch(1,1), p 0.001, gamma 0.419
40
30
20
9
8
7
6
0
50
100
150
k
45
Garch(1,1), p 0.001, gamma 0.096
0.07
0.05
0.04
0.03
0.02
0
50
100
150
k
46
Related Problems and Questions
  • How to detect heavy-tailedness
  • Extension of the Q-based ML method to all classes
    of distributions (not only heavy-tailed ones)
  • Further investigation of asymptotic properties of
    the Q-based ML estimators construction of CIs
    for (financial) time series (dependent data)
Write a Comment
User Comments (0)
About PowerShow.com