Title: AMANDA and IceCube neutrino telescopes at the South Pole
1AMANDA and IceCube neutrino telescopes at the
South Pole
- Per Olof Hulth
- Stockholm University
2Members of the AMANDA SU group
- Senior members
- Christian Bohm
- Per Olof Hulth
- Klas Hultqvist
- Christian Walck
- Forskarassistent
- Stephan Hundertmark
- Resarch students
- Thomas Burgess
- Patrik Ekström (Wuppertal)
- Yulia Minaeva
- Julio Rodriguez Martino
- Christin Wiedemann
- Electronic engenieer
- Lars Thollander
3Scientific goal
- Detect High Energy cosmic neutrinos by using the
ice sheet at The South Pole as a target. - Method
- Detect the emitted Cherenkov light from neutrino
induced interactions in the ice.
4Activities
- Mainly analysis and software development
- Preamplifiers designed and built in Stockholm
(SWAMPS)
5Short summary of neutrinos for pedestrians
- There are three different families of leptons
- Electron neutrino (?e) and the electron (e-)
- Muon neutrino (??) and the muon (?-)
- Tau neutrino (??) and the tau (?-)
6Neutrino interaction
??
??
lt 1 degree
The muon can travel several km in e.g. ice
7Cherenkov radiation
A charged particle moving with the speed of light
in the medium will generate a shock wave of light
q
cosq 1/(nb) b v/c, n refraction index
8South Pole
Dark sector
Skiway
AMANDA
Dome
IceCube
9myon
neutrino
10106 muons from cosmic rays per muon from
neutrinos !!!!
myon
Select only muons from below!!!! Except for
high Energies
neutrino
11Hot water heaters
-50 m
-55 C
1400 m
-42C
-20 C
-2400 m
12Photomultipliers Hamamatsu 20 cm 14 dynodes Gain
109
13AMANDA electronics
- Three different cable types (2400 -2600 m)
- Strings 1-4 coax cable, rise time 250 ns
- Strings 5-10 twisted pair rise time, 50-70 ns
- Strings 11-19 twisted pair rise time 100-150 ns
- Analog signal at surface about 1-10 mV
- Amplified 100 times by Stockholm
SWAMP (Lars Thollander)
14Technical requirements
- Absolute timing lt7 ns from any OM
- Geometrical position uncertainty lt 1m
- Electronic in ice should stand -50 C
- Low noise
15Building AMANDA The Optical Module and the String
16Evolution of read-out strategy
Strings 1-10 Strings 11-17,19
String 18
17New Project IceCube
- Increase volume to 1 km3
- 80 strings with 60 modules each
- Photomultiplier 25 cm (10 inch) 10 dynodes
(preliminary Hamamatsu) - Air shower detector on top (IceTop)
- Transport drill to Pole 03/04
- First 1-7 strings in 04/05
18IceTop
AMANDA
South Pole
IceCube
Skiway
80 Strings 4800 PMT
1400 m
2400 m
19IceCubeTop View
80 strings 60 modules/string Volume 1 km3 Depth
1400-2400 m
Counting House
20µ-events in IceCube
Eµ6 PeV
Eµ10 TeV
AMANDA-II
1 km
Measure energy by counting the number of fired
PMT. (This is a very simple but robust method)
21 1. Digital Optical Module
- Self-triggers on each pulse
- Captures waveforms
- Time-stamps each pulse
- Digitizes waveforms
- Performs feature extraction
- Buffers data
- Responds to Surface DAQ
- Set PMT HV, threshold, etc
- Noise rate in situ 500 Hz
DOM
33 cm
22IceCube String
1400 m
OM Spacing 17 m
2400 m
23Experimental Requirements IceCube
- Time resolution lt5 ns rms
- Waveform capture
- gt250 MHz - for first 500 ns
- 40 MHz - for 5000 ns
- Dynamic Range
- gt200 PE / 15 ns
- gt2000 PE / 5000 ns
- Dead-time lt 1
- OM noise rate lt 500 Hz (40K in glass sphere)
24 2. DAQ Network architecture
25In-Door deployment
26Hose Winch for the Ice Cube Project
27Receiving drum weldment
28POSITION OF DRILL(30HOUR ANALYSIS)