Title: Batch Fabrication of Ultrasensitive Cantilevers with Overhanging Nanomagnet Tips
1(No Transcript)
2Magnetic Resonance Force Microscopy
30 nm Fe magnet, 5 nm away from a single
proton F 1.3 aN
4.2K minimum detectable force Fmin 2.9 aN (1 Hz
bandwidth)
3Minimize Surface Noise Gs
- Friction less for metal than silicon tips
- Friction decreases with tip cross-section
- Both decay to background level when gt100 nm away
from the sample - Make metal tips that extend 100 nm from end of
cantilever
S. Kuehn, R. F. Loring, J. A. Marohn, Phys. Rev.
Lett, 96 156103 (2006)
Measurements at 300K, over a gold surface
4 Cantilever Design
220 by 100 nm by 1.5 micron Co magnet
Body design long, narrow, and very thin to
minimize intrinsic dissipation
5Other Fabrication Methods
- Focused Ion Beam Milling
- Cantilever below used to detect single e- spin2
- Ion damage
- Slow, serial process
- Hand-Gluing
- Cantilever below set MRFM sensitivity record of
6.0 105 mp in 20041 - Serial process
- Limited to 1mm minimum particle size
1 S. R. Garner, S. Kuehn, J. M. Dawlaty, N. E.
Jenkins, J. A. Marohn, Appl. Phys. Lett, 84 5091
(2004) 2 D. Rugar, R. Budakian, H. J. Mamin, B.
W. Chui, Nature 430, 329 (2004)
6Other methods for small magnet tips
1
- Focused-ion-beam deposited metal pillars1
- Metal coated or metal filled carbon nanotubes2,4
- Metal nanowires attached to cantilevers3
- All serial processes
- Device to device variation
- magnetic material
3
2
Scale bar 100 nm
1 Y. M. Lau, P. C. Chee, J. T. L. Thong, V. Ng,
J. Vac. Sci. Tech. A 20, 1295 (2002) 2 Z. Deng,
E. Yenilmez, J. Leu, J.E. Hoffman, E.W.J.
Straver, H. Dai, K.A. Moler, Appl. Phys. Lett.
85, 6263 (2004) 3 G. Yang et. al., Appl. Phys.
Lett. 87, 123507 (2005) 4 F. Wolny et. al., .
Appl. Phys. 104, 064908 (2008)
7Cantilever and tip fabrication from SOI wafer
8Fabricating Overhanging Magnets
- SF6 RIE process done using an Oxford Plasmalab 80
- No magnet damage observed
All Ni magnets, scale bars 200nm
9Fabricating Overhanging Magnets
- Magnets Over Oxide
- Fabricate magnets partially over oxide pillars
coplanar with device layer silicon - Create by localized oxidation
- KOH etching
- Careful design and placement of etched pit around
magnet - Requires lt111gt SOI wafers
Magnet
Oxide
Device Silicon
10(No Transcript)
11What took 2 years?
- Already produced large non-overhanging magnets on
similar cantilevers - After release, magnets damaged or gone
- HF etch? O2 plasma? Poor adhesion? KOH damage?
- Testing ruled these out
5 mm
12Metal Silicides!
- Ni (and Co) both form silicides around 200C1,2
- Heating in Bosch etch transforms magnet material
to metal silicide - Cantilever sandwiched between oxide layers,
little possibility for heat dissipation
g He cool
BOSCH etch
1L. A. Clevenger, C. V. Thompson, J. Appl. Phys.
67, 1325 (1990) 2H. Miura, E. Ma, C. V.
Thompson, J. Appl. Phys. 70, 4287 (1991)
13Preventing silicides
- Metal Barrier Layer
- Try to prevent Co/Ni diffusing to the Si
interface - Tried 20nm Cr, Ti, Ta layers
- Test via 500C anneal
- None worked
Cr
.6 x 1.5 um x 200 nm Co on 20nm barrier layer
- Heat Management
- Heating only issue for last 100mm of backside Si
etch - No protective front oxide
- Potassium hydroxide etch
- Slow Bosch etching
- Cryogenic etching
14Cantilever Magnetometry
- Frequency shift versus applied field
- Gives particle magnetic moment
- Required
- a) cantilever spring constant
- b) magnet dimensions
- Time consuming
- Cantilever shown at right Msat 0.40 T,
- Surface oxide or silicide layer?
J. A. Marohn et. al., Appl. Phys. Lett. 73, 3778
(1998)
15Surface Dissipation
- Taken over a gold coated polystyrene film
- G calculated from
-
- k, Q, and f measured at each distance point
- Comparison data for a bare silicon cantilever
IBM Force sensitivity ?10 aN Hz-1/2 below h 24
nm Cornell Force sensitivity ? 10 aN Hz-1/2 down
to h 3 nm
16Conclusions
- Overhanging magnet process viable by a variety of
methods - Cantilever fabrication viable with Ni magnets
- Silicide prevention essential
- Ni mostly intact importantly at leading edge
(see Marohn talk) - In force detection, few nm working distance
possible
17Future Directions
- Sub-attoNewton sensitivity
- Cantilever at right is 340nm thick, 5mm wide, and
1.5mm long. - Theoretical Fmin 2aN at 4.2K
- Low frequency noise issues
- Smaller magnets
- Smaller magnets gt larger force gradient, less
friction - Magnet at right is 45nm wide, 30nm thick Ni -
believe lt30nm possible
- Co and Fe magnets
- Co 1.6 T, Fe 2.2 T Sat. Mag.
- Co More susceptible to silicide, chlorine
contamination - Fe Rapidly oxidizes
- ALD SiO2 protective layer
18Acknowledgements
- Sean Garner
- Seppe Kuehn
- Neil Jenkins
- Jonilyn Longenecker
- Eric VanWerven
- Eric Moore
- Sanggap Lee
- Lee Harrell
- Boyan Penkov
- Jay Van Delden
- Jeremy Ong
- John Marohn
- Army Research Office MURI
- National Institutes of Health (R01)
- Cornell Nanofabrication Facility (ECS 03-35765 )