Math 307 - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Math 307

Description:

http://www.math.iastate.edu/hentzel/class.307.ICN. Text: Linear Algebra With Applications, Second Edition. Practice Test: Test I, ... – PowerPoint PPT presentation

Number of Views:53
Avg rating:3.0/5.0
Slides: 21
Provided by: ihen
Category:
Tags: math | practice | test

less

Transcript and Presenter's Notes

Title: Math 307


1
  • Math 307
  • Spring, 2003
  • Hentzel
  • Time 110-200 MWF
  • Room 1324 Howe Hall
  • Instructor Irvin Roy Hentzel
  • Office 432 Carver
  • Phone 515-294-8141
  • E-mail hentzel_at_iastate.edu
  • http//www.math.iastate.edu/hentzel/class.307.ICN
  • Text Linear Algebra With Applications, Second
    Edition

2
  • Practice Test Test I,
  • Actual test is Friday, February 12, 2003
  • Hentzel
  • 1. Solve AX B and write the answer as
  • X X 0 a1 X 1 a2 X 2 ... ar
    Xr
  • and check your answer using
  • AX0 X1 X2 ... Xr B 0 0 0 ... 0.
  • 1 2 0 1 2 3 x
    2
  • 1 3 0 0 1 2 y
    1
  • 2 5 0 1 3 5 z
    3
  • 4 10 0 2 6 11 w
    7
  • u
  • v

3
  • 1 2 0 1 2 3 x 2
  • 1 3 0 0 1 2 y 1
  • 2 5 0 1 3 5 z 3
  • 4 10 0 2 6 11 w 7
  • u
  • v

4
  • 1 2 0 1 2 3 2
  • 1 3 0 0 1 2 1
  • 2 5 0 1 3 5 3
  • 4 10 0 2 6 11 7

5
  • 1 0 0 3 4 0 -1
  • 0 1 0 -1 -1 0 0
  • 0 0 0 0 0 1 1
  • 0 0 0 0 0 0 0

6
  • 2. Find the inverse of this matrix.
  • 1 1 2 0
  • 1 2 3 0
  • 2 0 5 1
  • 2 3 4 0

7
  • 1 1 2 0 1 0 0 0
  • 1 2 3 0 0 1 0 0
  • 2 0 5 1 0 0 1 0
  • 2 3 4 0 0 0 0 1

8
  • 1 0 0 0 1 -2 0 1
  • 0 1 0 0 -2 0 0 1
  • 0 0 1 0 1 1 0 -1
  • 0 0 0 1 -7 -1 1 3

9
  • 3. (a) Write the matrix of the linear
    transformation of differentiation with respect to
    the basis
  • e2x , x e2x , x 2 e2x , x3 e 2x .
  • (b) Find some way to use the matrix from part
    (a) to compute the eighth derivative of
  • 2 3x 5x2 - x3 e2x .

10
  • 2 1 0 0 2 7 30 106 320 864 2144
    4960
  • 0 2 2 0 3 16 46 108 224 416 672
    832
  • 0 0 2 3 5 7 8 4 -16 -80
    -256 -704
  • 0 0 0 2 -1 -2 -4 -8 -16 -32
    -64 -128
  • 10752
  • 256
  • -1792
  • -256

11
  • 4. Multiply these two matrices.
  • 1 0 0 0 1 0 3 8 2 4
  • 0 1 0 0 0-1 1 0 1 2
  • 0 0 2 0 0 0 3 3 1 2
  • 1 1 1 0 0 0 4 3 1 0
  • 0 0 0 0 1 1 5 4 3 2
  • 1 3 9 2

12
  • 5. Tidbits
  • (a) The rows of AB are linear combinations of
    what?

13
  • (b) What is the rank of a matrix?

14
  • (c) What is the relation between the rank, the
    nullity, and the number of columns of a matrix?

15
  • (d) What is the relationship between the Row
    Canonical Form of a matrix and the existence of
    the inverse of the matrix?

16
  • (e) What is the 2x2 matrix which rotates the
    plane through 60 degrees?

17
  • (f) Give a non zero 2x2 matrix which is not
    invertible.

18
  • (g) What are the three elementary row
    operations.

19
  • (h) When is a function a linear transformation?

20
  • (j) Give three 2x2 matrices A, B, C such that
    (AB)C / A(BC)
Write a Comment
User Comments (0)
About PowerShow.com