Title: Chapter 6 Periodic Functions
1Chapter 6Periodic Functions 6.1 The Sine and
Cosine Functions 6.2 Circular Functions and
their Graphs 6.3 Sinusoidal Models 6.4
Inverse Circular (Trigonometric) Functions
2Average Daily High Temperatures in New York City
H(t) 24sin(0.0172(t-120)) 62
On what days was the average daily high
temperature equal to 50 degrees?
50 24sin(0.0172(t-120)) 62
3Inverse Trigonometric Functions
solve sin(t) 1
solve sin(t) 1/2
solve sin(t) -v2/2
4Inverse Trigonometric Functions
solve sin(t) 1/3
t sin-1(1/3)ort arcsin(1/3)
t .34calculator
solve sin(t) -1/3
t 3.14 .34 3.44t 6.28 - .34 5.94unit
circle symmetry
t 3.14 - .34 2.80unit circle symmetry
t .34 2kp t 2.80 2kp
t 3.44 2kp t 5.94 2kp
5Inverse Sine Function
y sin-1(x) or y arcsin(x) means sin(y)
x and p/2 y p/2
arc between p/2 and p/2
number between -1 and 1
sin-1(x)
sin-1(-1/2)
sin-1(0)
otherwise calculator
sin-1(v3/2)
sin-1(1)
sin-1(-v2/2)
6Inverse Sine Function
y sin-1(x) or y arcsin(x) means sin(y)
x and p/2 y p/2
ysin(x)
yarcsin(x)
ySin(x)
7Inverse Cosine Function
y cos-1(x) or y arccos(x) means cos(y)
x and 0 y p
ycos(x)
yarccos(x)
yCos(x)
8Inverse Tangent Function
y tan-1(x) or y arctan(x) means tan(y)
x and p/2 lt y lt p/2
ytan(x)
yarctan(x)
yTan(x)
9More Practice
Page330 53,55,63, 65
10More Practice
Page330 63 (check)
11More Practice
Page330 65 (check)
14sin(Pi(t2.5)/5) 0
1250 24sin(0.0172(t-120)) 62
7p/6 0.0172(t-120)
(1/0.0172)(7p/6) t-120
-12 24sin(0.0172(t-120))
(1/0.0172)(7p/6) 120 t
-12/24 sin(0.0172(t-120))
333 t
-1/2 sin(0.0172(t-120))
arcsin(-1/2) 0.0172(t-120)
1350 24sin(0.0172(t-120)) 62
-p/6 0.0172(t-120)
(1/0.0172)(-p/6) t-120
-12 24sin(0.0172(t-120))
(1/0.0172)(-p/6) 120 t
-12/24 sin(0.0172(t-120))
90 t
-1/2 sin(0.0172(t-120))
arcsin(-1/2) 0.0172(t-120)
14Homework
Page330 53-70 TURN IN 54, 56, 58, 66
15FINAL EXAM - REVIEW
- TRIG FUNCTIONS
- Basic evaluations (p/6, p/4, p/3, p/2, p )
- Given info to formula to graph.
- Picture to info to formula
- Given sin(t), determine cos(t), tan(t), cot(t),
sec(t) and csc(t). - Use inverse trig ideas to solve a trig equation
16FINAL EXAM - REVIEW
- EXAM 2
- Find a shifted exponential formula
- Determine instantaneous rate of change for
logistic model - 3) Find and interpret vertex in context.
- Use logarithms to solve an exponential equation.
- Find polynomial formula from zeroes and y
intercept.
17FINAL EXAM - REVIEW
- EXAM 1
- Identify formulas to match graphs.
- Determine an inverse function.
- 3) Determine a linear model in context.
- Determine a basic exponential model in context.
- Determine a linear model from two points.