Title: PowerPoint%20Presentation%20%20-%20%20Nessun%20titolo%20diapositiva
1Advanced LP models
column generation
2min
3min
max
4Bin packing example
bins of size K
items of different types
items of type i have size s(i) and there are
n(i) of them
problem
put all items into the bins minimizing the number
of bins
5(No Transcript)
6(No Transcript)
7(No Transcript)
81
feasible patterns
2
0
9(No Transcript)
10........
1
2
0
0
1
0
0
3
x
........
2
0
2
0
0
4
3
4
........
0
0
4
4
4
0
2
8
11min
max
12........
1
2
0
0
1
0
0
........
2
0
2
0
0
4
3
........
0
0
4
4
4
0
2
131
2
0
14integer
knapsack !
otherwise add pattern maximizing knapsack
15example
bin capacity 20
3 types
type 1 size 7 quantity 50
type 2 size 5 quantity 100
type 3 size 3 quantity 70
y ( 0 1/4 1/2 )
y ( 1/3 1/4 1/6 )
0 1 5
y ( .35 .25 .15 )
16however, change quantities to 52 97
71
how to get an integer solution?
17(No Transcript)
18compute the 5 longest paths
7
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
197
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
3
5
1
1
1
1
207
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
3
5
1
1
1
1
217
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
7
3
1
11
3
1
9
3
1
3
1
1
227
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
7
3
1
11
3
1
9
3
1
3
1
1
237
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
11
3
1
9
3
1
3
1
1
11
2
2
7
3
1
247
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
11
3
1
9
3
1
3
1
1
11
2
2
7
3
1
257
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
3
1
1
11
2
2
18
4
2
15
4
2
7
3
1
14
4
3
11
4
3
11
3
1
267
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
3
1
1
11
2
2
18
4
2
15
4
2
7
3
1
14
4
3
11
4
3
11
3
1
277
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
26
5
1
3
1
1
11
2
2
15
4
2
22
5
1
20
5
2
7
3
1
18
4
2
11
4
3
16
5
3
11
3
1
16
5
4
16
5
2
14
4
3
287
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
24
4
1
21
4
1
26
5
1
33
7
1
3
1
1
11
2
2
15
4
2
22
5
1
20
5
2
27
7
2
7
3
1
18
4
2
11
4
3
16
5
3
23
7
3
11
3
1
16
5
4
23
7
4
16
5
2
14
4
3
297
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
27
7
2
7
3
1
11
4
3
16
5
3
23
7
3
23
7
2
11
3
1
16
5
4
23
7
4
22
5
1
19
7
3
307
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
317
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
327
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
337
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
347
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
357
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
367
8
2
4
6
2
3
4
2
4
1
3
1
8
5
7
3
5
7
5
6
2
3
4
5
6
7
8
5
1
1
17
2
1
9
3
1
21
4
1
26
5
1
33
7
1
29
7
1
24
4
1
3
1
1
11
2
2
15
4
2
20
5
2
31
6
1
7
3
1
11
4
3
16
5
3
27
7
2
23
7
2
11
3
1
16
5
4
26
6
2
22
5
1
25
6
3
19
7
3
37integer
V(j)optimal value for a knapsack of capacity j
V(j) max V(j - s(i)) y(i) i 1, ... , n
38min
39max b(i) y(i)
however this is the dual problem we need the
patterns which are in the primal
so lets make the dual of the above problem
40It turns out that the dual is a flow problem
410
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
424
0
25
1
2
3
4
24
4
5
4
6
25
7
8
24
9
10
11
12
254
29
13
4
14
15
24
254
16
17
18
24
19
20
434
0
1
25
2
24
3
4
4
5
4
6
7
25
8
24
9
10
11
12
254
29
13
4
14
15
24
16
254
17
18
24
19
20
444
0
1
25
2
4
3
24
4
5
4
6
7
25
8
24
9
10
11
12
254
29
13
4
14
15
24
254
16
17
18
24
19
20
45(No Transcript)
4613
8
8
6 times
4721
5
5
36
6 times
8 times