Protocol Composition Logic II - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Protocol Composition Logic II

Description:

Could break: Bob's signature from one protocol could be used to attack another ... AES based using above keys (Shared Secret-PMK) Laptop. Access Point. Auth Server ... – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 34
Provided by: Anupam73
Category:

less

Transcript and Presenter's Notes

Title: Protocol Composition Logic II


1
Protocol Composition Logic II
18739A Foundations of Security and Privacy
  • Anupam Datta
  • Fall 2007-08

2
Protocol Analysis Techniques
Crypto Protocol Analysis
Formal Models
Computational Models
Dolev-Yao (perfect cryptography)
Random oracle Probabilistic process
calculi Probabilistic I/O automata
Protocol Logics
Model Checking
Inductive Proofs
Process Calculi

Applied ?-calculus
BAN, PCL
Murphi, AVISPA
Paulson, MSR
3
Protocol Composition Logic
  • Intuition
  • Formalism
  • Protocol programming language
  • Protocol logic
  • Proof System
  • Example
  • Signature-based challenge-response
  • Proof techniques

TODAY
4
Example JFK Protocol
  • Recall earlier lecture about JFK design
  • Today we will describe corresponding proof
    techniques

5
Ingredient 1 Diffie-Hellman
  • A ? B ga
  • B ? A gb
  • Shared secret gab
  • Authentication
  • Identity protection

6
Ingredient 2 Challenge-Response
  • A ? B m, A
  • B ? A n, sigBm, n, A
  • A ? B sigAm, n, B
  • Shared secret
  • Authentication
  • Identity protection

7
DH Challenge-Response
  • ISO 9798-3 protocol
  • A ? B ga, A
  • B ? A gb, sigBga, gb, A
  • A ? B sigAga, gb, B
  • Shared secret gab
  • Authentication
  • Identity protection

m ga n gb
Formalized as sequential composition
8
Ingredient 3 Encryption
  • Encrypt signatures to protect identities
  • A ? B ga, A
  • B ? A gb, EKsigBga, gb, A
  • A ? B EKsigAga, gb, B
  • Shared secret gab
  • Authentication
  • Identity protection

Formalized using abstraction-refinement
9
PCL Proof Techniques
  • Modular Proofs
  • Parallel Composition
  • Sequential Composition
  • Generic Template-style Proofs
  • Function variables
  • Higher-order logic extension

10
Parallel Composition of Protocols
  • The parallel composition Q1 Q2 of protocols Q1
    and Q2 is the union of the sets of roles of Q1
    and Q2.
  • Example
  • IKEv2 SSL

11
Compositional Proofs Intuition
  • Protocol specific reasoning
  • if honest Bob generates a signature of the form
  • sigB m, n, A,
  • he sends it as part of msg2
  • Could break Bobs signature from one protocol
    could be used to attack another
  • PCL proof system Invariant rule
  • Protocol independent reasoning
  • Axiom stating unforgeability of signatures
  • Still good unaffected by composition
  • All other axioms and proof rules for PCL

12
Proof Tree
Q1 - Inv
Q1 Q2 - Inv
Inv -Auth
Bulk of proof reused
Additional work to prove Q2 - Inv
Inv
Axiom
Theorem If Q - Inv and Q - Inv, then Q Q
- Inv
INV rule
Other rules
Auth
DDMP CSF03 -gt JCS Special Issue, MFPS03
Security property
13
Parallel Composition Theorem
  • IF
  • Q1 satisfies security property ? in isolation
  • Q2 respects the invariants ? of Q1 used in the
    proof of security property ??
  • THEN
  • Q1 Q2 also satisfies security property ?

14
Sequential Composition of Protocols
  • Run protocols in sequence
  • Examples
  • Key exchange followed by secure sessions that use
    the exchanged key
  • Diffie-Hellman followed by Challenge-Response
    ISO-9798-3

15
ISO-9798-3 Key Exchange
ga, A
gb, sigB ga, gb, A
A
B
sigA ga, gb, B
  • Authentication
  • Do we need to prove it from scratch?
  • Shared secret gab

Goal Combine proofs of Diffie-Hellman and
challenge-response sub-protocols
16
Abstract challenge response
InitACR(A, X, m) send A, X, m receive X,
A, x, sigXm, x send A, X, sigAm, x
RespACR(B, n) receive Y, B, y send B, Y,
n, sigBy, n receive Y, B, sigYy, n
  • Free variables m and n instead of nonces
  • Modal form ? actions ?
  • precondition Fresh(A,m)
  • actions InitACR A
  • postcondition Honest(B) ? Authentication
  • Secrecy is proved from properties of
    Diffie-Hellman

17
Diffie-Hellman Property
  • Formula
  • true new a A Fresh(A, ga)
  • Diffie-Hellman property
  • Can compute gab given ga and b or gb and a
  • Cannot compute gab given ga and gb

18
Challenge Response Property
  • Modal form ? actions P ?
  • precondition Fresh(A,m)
  • actions Initiator role actions A
  • postcondition
  • Honest(B) ? ActionsInOrder(
  • send(A, A,B,m),
  • receive(B, A,B,m),
  • send(B, B,A,n, sigB m, n, A),
  • receive(A, B,A,n, sigB m, n, A) )

19
Composition DHCR ISO-9798-3
  • Additive Combination
  • DH post-condition matches CR precondition
  • Sequential Composition
  • Substitute ga for m in CR to obtain ISO.
  • Apply composition rule
  • ISO initiator role inherits CR authentication.
  • DH secrecy is also preserved
  • Proved using another application of composition
    rule.
  • Nondestructive Combination
  • DH and CR satisfy each others invariants

20
Definition of Sequential Composition
21
Sequential Composition Theorem
  • Both protocols should satisfy each others
    invariants (similar to parallel composition)
  • Post-condition of first should match
    pre-condition of second protocol

22
PCL Proof Techniques
  • Modular Proofs
  • Parallel Composition
  • Sequential Composition
  • Generic Template-style Proofs
  • Function variables
  • Higher-order logic extension

23
Protocol Templates
  • Protocols with function variables instead of
    specific cryptographic operations
  • Idea One template can be instantiated to many
    protocols
  • Advantages
  • proof reuse
  • design principles/patterns

DDMP CSF04
24
Example
Challenge-Response Template
A ? B m B ? A n, F(B,A,n,m) A ? B
G(A,B,n,m)
A ? B m B ? A n,EKAB(n,m,B) A ? B
EKAB(n,m)
A ? B m B ? A n,HKAB(n,m,B) A ? B
HKAB(n,m,A)
A ? B m B ? A n, sigB(n,m,A) A ? B
sigA(n,m,B)
ISO-9798-3
SKID3
ISO-9798-2
Instantiations
25
Extending Formalism
  • Language Extensions
  • Add function variables to term language for
    cords and logic (HOL)
  • Semantics
  • Q f ? sQ sf, for all substitutions s
    eliminating all function variables
  • Soundness Theorem
  • Every provable formula is valid

26
Abstraction-Instantiation Method(1)
  • Characterizing protocol concepts
  • Step 1 Under hypotheses about function variables
    and invariants, prove security property of
    template
  • Step 2 Instantiate function variables to
    cryptographic operations and prove hypotheses.
  • Benefit
  • Proof reuse

27
Example
Challenge-Response Template
A ? B m B ? A n, F(B,A,n,m) A ? B
G(A,B,n,m)
  • Step 1
  • Hypotheses Function F(B,A,n,m) can be computed
    only by B or A,
  • Property Mutual authentication
  • Step 2
  • Instantiate F() to signature, keyed hash,
    encryption (ISO-9798-2,3, SKID3)
  • Satisfies hypotheses gt Guarantees mutual
    authentication

28
Proof Structure
Discharge hypothesis
axiom
hypothesis
Proof reuse
Instance
Template
29
Abstraction-Instantiation Method(2)
  • Combining protocol templates
  • If protocol P is a hypotheses-respecting
    instance of two different templates, then it has
    the properties of both.
  • Benefits
  • Modular proofs of properties
  • Formalization of protocol refinements

30
Refinement Example Revisited
Encrypt Signatures
A ? B ga, A B ? A gb, EK sigB ga, gb, A A
? B EK sigA ga, gb, B
  • Two templates
  • Template 1 authentication shared secret
  • (Preserves existing properties proof reused)
  • Template 2 identity protection (encryption)
  • (Adds new property)

31
Summary
  • PCL Logic for security protocols
  • Sound wrt symbolic and cryptographic models
  • High-level short proofs 2-3 pages
  • Proof techniques
  • Modular/compositional proofs
  • Generic template-style proofs
  • Proofs of industrial protocols
  • IEEE 802.11i (w/ TLS), Kerberos, GDOI, IKEv2
    (unpublished), Mobile IPv6 (in progress)
  • Implementation not done

32
Thanks ! Questions?
33
Modular Analysis / Composition
Auth Server
Laptop
Access Point
(Shared Secret-PMK)
802.11i Key Management ?20 msgs in 4 components
HSDDM CCS05 -gt TISSEC Special Issue
Write a Comment
User Comments (0)
About PowerShow.com