Title: First results from silicon and diamond sensors
1First results from silicon and diamond sensors
K. Afanasiev1, I. Emeliantchik1, E.
Kouznetsova2, W. Lohmann2, W. Lange2 1 NC
PHEP, Minsk 2 DESY Zeuthen
2CVD diamond
- Radiation resistant ( up to 10 MGy)
- Fast (charge collection time 10 ps)
- Low dielectric constant gt Low capacitance
- but
- Low signal lt ½ signal from silicon
- Charge collection distance dc
3Si - Diamond comparison
  Silicon CVD-Diamond
Resistivity, Wcm Resistivity, Wcm 2.3105 1013-1016
Carrier density, cm-3 Carrier density, cm-3 151010 lt103
Dielectric constant Dielectric constant 11.9 5.7
Capacitance (1Â cm2, 500Â mm), pF Capacitance (1Â cm2, 500Â mm), pF 35 17
Breakdown field, V/cm Breakdown field, V/cm 3105 107
   Â
Energy/(e--h pair), eV Energy/(e--h pair), eV 3.6 13
Mobility, cm2/(Vs) e- 1350 1800 - 2200
Mobility, cm2/(Vs) h 480 1200 - 1600
   Â
Average e--h number per 100Â mm (for MIP) Average e--h number per 100Â mm (for MIP) 9200 3600
Energy deposition per 100 mm (for MIP), keV Energy deposition per 100 mm (for MIP), keV 40 50
Charge collection distance dc, mm Charge collection distance dc, mm  60 - 250 dc  f(l)
4Test Set Up
Si/diamond
5 mm
SC. 2
lead (for cosmics only)
SC. 1
5Test Set Up
6Electronics calibration
- PA VV 50-3
- (charge sensitive)
- ADC CAEN V265 12 bit
Cf
1 pF
gen
50
Cw
Cv gCf
(diamond sensor connected )
ENC 700 e
7Sr source triggering system
8Sr source triggering system
gt mip - signal
9Signals from 90Sr silicon
Si (mip)
10Signals from 90Sr diamond
Diamond (whole b-spectra)
Diamond (noise)
11Problems and further steps
- Noise level is not optimal for signal/noise
separation - Possible solutions
- Noise optimization of the existing preamplifier
- or
- Switch to Amptek A250
- New trigger scintillator matching the size of the
sensor
Expected noise 350 e
12Further steps
New diamond samples
- Fraunhofer Institute (Freiburg)
- (12 x 12 mm)
- 300 and 200 mm
- Different surface treatments
- Prokhorov Institute (Moscow)
- (Dubna group)