Plcker Coordinate of a Line in 3Space - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Plcker Coordinate of a Line in 3Space

Description:

A line in 3-space has four degree-of-freedom (why so? ... Intersection (coplanar and nonparallel) ((V1.N)U2-(V2.N)U1-(V1.U2)N:(U1 U2).N) ... – PowerPoint PPT presentation

Number of Views:142
Avg rating:3.0/5.0
Slides: 55
Provided by: jyunmi
Category:

less

Transcript and Presenter's Notes

Title: Plcker Coordinate of a Line in 3Space


1
Plücker Coordinate of a Line in 3-Space
2
References
  • Plucker coordinate tutorial, K. Shoemake rtnews
  • Plucker coordinates for the rest of us, L. Brits
    flipcode
  • Plucker line coordinate, J. Erickson cgafaq

3
Introduction
  • A line in 3-space has four degree-of-freedom (why
    so?!)
  • Plucker coordinates are concise and efficient for
    numerous chores
  • One special case of Grassmann coordinates
  • Uniformly manage points, lines, planes and flats
    in spaces of any dimension.
  • Can generate, intersect, with simple equations.

4
Masons Version
Line in parametric form
Define
Plucker coordinate of the line (q, q0)
Six coordinate 4 DOFs
O
  • (q, q0) q?0, q0?0 general line
  • (q, q0) q?0, q00 line through origin
  • (q, q0) q0, (q00) not allowed

5
The following from Shoemakes note
6
Summary 1/3
7
Summary 2/3
8
Summary 3/3
9
Notations
  • Upper case letter a 3-vector U (ux,uy,uz)
  • Vector U homogeneous version (U0)
  • Point P homo version (P1), (Pw)
  • Cross and dot product P?Q, U.V
  • Plane equation axbyczdw0
  • abcd or Dd with D(a,b,c)
  • D0 origin plane plane containing origin
  • Plucker coordinate UV
  • Colon proclaims homogeneity

10
Determinant Definition
LP-QP?Q
row x
row y
row z
row w
Make all possible determinants of pairs of rows
PQ
P?Q
11
Example
P(2,3,7), Q(2,1,0). L UV
027-714-4.
Order does not matter
identical
Q(2,3,7), P(2,1,0). L UV
0-2-77-144
Identical lines two lines are distinct IFF their
Plucker coordinates are linearly independent
12
Tangent-Normal Definition
LUU?Q
PQ UV U PQ V PQ (UQ)Q UQ
(U0) ? direction of line V0 ? origin plane
through L
Question any pair of points P,Q gives the same
UV? p.14
13
Example
y
U(1,0,-1) Q(0,0,1) U?Q (0,-1,0) L10-10-1
0
x
y
z
If we reverse the tangent U(-1,0,1) Q(0,0,1) U?
Q (0,1,0) L-101010 still get the same
line
14
Remark
PQkU U P Q kU V PQ (QkU) Q
kUQ PQ kUkV
Moving P and/or Q scales U V together! Similar
to homogeneous coordinates
15
Remarks
  • Six numbers in Plucker coordinate UV are not
    independent.
  • Line in R3 has 4 dof. six variables, two
    equations one from homogeneity one from U.V 0
  • Geometric interpretation UV
  • U line tangent (U?0, by definition)
  • V the normal of origin plane containing L (V0 ?
    L through origin)
  • Identical lines two lines are distinct IFF their
    Plucker coordinates are linearly independent

Ex 0-2-77-144 and 0414-1428-8 are
the same (but different orientation)
210000 is different
16
Example
LP-QP?Q LUU?Q
P(0,1,0) Q(1,0,0)
P(1,0,0) Q(0,1,0)
Q
P
U(1,-1,0) Q(0,1,0)
U(2,-2,0) Q(0,1,0)
U(-1,1,0) Q(0,1,0)
17
Distance to Origin
T closest to origin Any Q on L Q T sU V
UQ U(TsU) UT V U T sin90
U T T.T (V.V) / (U.U) VU(UT)U
(U.U)T T(VUU.U)
Squared distance
Closest point
18
Example
y
U(1,0,-1) Q(0,0,1) U?Q (0,-1,0) L10-10-1
0 T(VUU.U) (1012) (1/2,0,1/2) Squared
distance (V.V)/(U.U) 1/2
x
y
z
19
Line as Intersection of Two Planes1
Plane equation ax by cz d 0 P
(x,y,z), point on L E.P e 0 F.P f 0
f(E.Pe) e(F.Pf) 0 (fE eF).P 0 fE-eF
defines the normal of an origin plane through
L direction U E?F
P
L E?F fE eF
20
Example
y
E 100-1 F 0010 L E?FfE-eF
0-10001 Check P (1,1,0), Q (1,0,0) L
P-QP?Q 01000-1
P
x
Q
z
z 0 0010
x 1 100-1
21
Line as Intersection of Two Planes2
  • If both planes do not pass through origin, e?0
    and f?0, we can normalize both planes to E1
    and F1.
  • The intersecting line then becomes E?FE-F

L
Q
E1
F1
P-QP?Q
P
E?FE-F
L
Duality!
O
22
Other Duality
  • V0 origin plane thru L (V?0)
  • T(V?UU.U) point of L ? (U0)
  • (U0) direction of L
  • U?VV.V plane thru L ? V0

U?VV.V
O
Verify!
V0
23
Verify
LE ? FfE-eF (U ? V) ? V -(V.V)V (U ?
V) ? V -U(V.V)V(U.V) -U(V.V) L
-U(V.V)-V(V.V) UV
L
24
Line-Plane Intersection1
Points on V?N0 (V?Nw) Intersection the
point on U?VV.V!
  • L and plane N0

V?N0
(U ? V).(V ? N)w(V.V) 0 w(V.V) (V ? U).(V ?
N) N.((V ? U) ? V) N.(-(U.V)V(V.V)U)(V.V)(U.
N) w U.N
U?VV.V
UV ? N0 (V?NU.N)
25
Line-Plane Intersection2
Nn
  • L and plane Nn

N0
O
L
V0
Derivation pending
UV ? Nn (V?NnUU.N)
26
Example
U(1,0,-1) Q(0,0,1) U?Q (0,-1,0) L10-10-1
0 V?NnU (-1,0,0) (-2)(1,0,-1)
(1,0,-2) U.N (1,0,-1).(-1,0,0)
-1 Intersection at (-1,0,2)!
UV ? Nn (V?NnUU.N)
y
x
Intersect with y 0, 0100 (V?NU.N)
(0000), overlap Intersect with y 1,
010-1 (V?NnUU.N) (10-10) Intersect at
infinity
y
z
Z 2 001-2
27
Common Plane1
Derivation pending
  • UV and (Pw) ? U?P-wVV.P

y
U (0,0,1) V U?Q (0,0,1) ?(0,1,0)
(-1,0,0) (Pw) (1101) U?P-wVV.P
010-1
x
z
28
Common Plane2
Derivation pending
  • UV and (N0) ? U?NV.N

y
U (0,0,1) V U?Q (-1,0,0) N (1,0,0)
(-1,0,0) get the same U?NV.N 010-1
x
z
29
Generate Points on Line1
  • Useful for
  • Computing transformed Plucker coordinate
  • Line-in-plane test

Use UV ? N0 (V?NU.N)
Any N will do, as long as U.N?0 Take non-zero
component of U
N
N
U
O
30
Example
y
As before L UV 001-100 Take N
(0,1,1) UV ? N0 (V?NU.N) (01-11)
x
z
31
Example (cont)
Point-on-Plane Test Nn contain (Pw) IFF
N.Pnw 0
y
Is L in 1100? No (1,1,0).(0,1,-1) 0 ? 0
x
Is L in 1000? Yes (1,0,0).(0,1,-1) 0 0
z
32
Point-on-Line Test
1. Generate two independent planes
containing the line. 2. Perform point-in-plane
tests twice
y
N2
N1
U
N,N1,N2 three base vectors Choose N according to
nonzero component of U N1 and N2 are the other
two axes Check point-in-plane with U?N1V.N1
and U?N2V.N2
x
N
z
33
Example
L 001-100, P (01-21) N (0,0,1),
N1 (0,1,0), N2 (1,0,0) Plane1 -1000
(-1,0,0).(0,1,-2)0 0 Plane2 010-1
(0,1,0).(0,1,-2) - 1 0
y
P
N2
N1
U
N
x
z
34
Duality
  • Parametric equation of L
  • Weighted sum of (U0) and T(V?UU.U)
  • Pnt(t) (V?UtUU.U)
  • Parametric form of planes through L
  • Generate two planes as previous page

L 001-100 Pnt(t) (0-1t1)
35
Two Lines Can Be
  • Identical
  • Linearly dependent Plucker coordinate
  • Coplanar find common plane
  • Intersecting find intersection
  • Parallel find distance
  • Skewed find distance

36
Coplanarity Test
L2 U2V2
L1 U1V1
U1.V2V1.U2 0
L1U2 U1?U2V1.U2
L2 U1 U2?U1V2.U1
37
L1 L2 Coplanar
L1 U1V1 L2 U2V2
  • Find the common plane
  • Intersecting lines U1?U2V1.U2
  • Parallel (distinct) lines (U1?U2 0)
  • (U1.N)V2-(U2.N)V1(V1?V2).N with N.U1?0
  • Intersection (coplanar and nonparallel)
  • ((V1.N)U2-(V2.N)U1-(V1.U2)N(U1?U2).N)
  • Where N is unit axis vector, independent of U1
    and U2

38
Intersection Point
  • Coplanar and non-parallel ? intersect
  • ((V1.N)U2-(V2.N)U1-(V1.U2)N(U1?U2).N)
  • Where N is unit axis vector, independent of U1
    and U2

39
L1 L2 Skewed
  • Not coplanar IFF skewed

40
Distance Computation in R3
41
Line-Point Distance
L
P2
D
  • Generate P1 containing L p as Dd
  • Generate P2 containing L D
  • Compute distance from p to P2

p
P1Dd
42
Parallel Line Distance
D
D
U
Find the common plane Dd Find P1 containing
L1 and D Find P2 containing L2 and D Find
distance between P1 P2
Dd
L2
L1
P1
P2
43
Skewed Line Distance
L2
U2
P2
U1
P1
Generate P1 containing L1 and U2 Generate P2
containing L2 and U1 Find distance between P1 P2
L1
44
Application
  • Ray-polygon and ray-convex volume intersection

45
Relative Position Between 2 Lines
Here, the lines are oriented!! orientation
defined by U
Looking from tail of L1
46
Example
Note here the line is oriented L and L are
not the same
y
R
L1100000
P(1/3,1/3,0) Q(1/3,1/3,1)
L3
L2
L2-11000-1
x
L30-10000
L1
R00-11/3-1/30 00-31-10
z
R vs. L1 (00-3).(000) (1-10).(100) 1
gt 0
R vs. L2 (00-3).(00-1) (1-10).(-110)
1 gt 0
R vs. L3 (00-3).(000) (1-10).(0-10)
1 gt 0
47
Example
R
y
L1100000
P(1,1,0) Q(1,1,1)
L3
L2
L2-11000-1
x
L30-10000
L1
R00-11-10
z
R vs. L1 (00-1).(000) (1-10).(100) 1
gt 0
R vs. L2 (00-1).(00-1) (1-10).(-110)
-1 lt 0
R vs. L3 (00-1).(000) (1-10).(0-10)
1 gt 0
48
Summary
49
Defining Lines
  • L UV, UV 0 and U?0
  • L PQ PQ, P,Q distinct points on L line is
    directed from Q?P
  • L U UQ, U direction, Q a point on line
  • L EFfE eF Ee Ff distinct planes
    containing line

50
Basic Evaluations
  • Minimum squared distance from origin
  • (V.V)/(U.U)
  • Point closest to origin
  • (VUU.U)
  • Plane/line intersection
  • (VN-UnU.N)
  • Plane defined by L and (Pw)
  • UPVwV.P
  • Plane containing L with direction N
  • UNV.N

51
The End
52
Questions
  • Plucker coordinate of transformed line
  • Nonperspective transform P U
  • Perspective transform P1 P2
  • http//www.gamedev.net/community/forums/topic.asp?
    topic_id275350

53
(No Transcript)
54
Example
y
U(1,0,-1) V(0,-1,0) L10-10-10 Different
normal gives different line L 10-1
0-20
x
y
z
Reverse normal gives different line U(1,0,-1) V(
0,1,0) L10-1010
x
z
Write a Comment
User Comments (0)
About PowerShow.com