Logic Soft Errors Design and CAD Challenges - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Logic Soft Errors Design and CAD Challenges

Description:

Logic soft error modeling challenges. Latches & flip-flops Well understood ... Built In Soft Error Resilience New technique. Soft error rate reduction: at ... – PowerPoint PPT presentation

Number of Views:60
Avg rating:3.0/5.0
Slides: 31
Provided by: davidn52
Category:

less

Transcript and Presenter's Notes

Title: Logic Soft Errors Design and CAD Challenges


1
Logic Soft Errors Design and CAD Challenges
  • Subhasish Mitra
  • Tanay Karnik
  • Norbert Seifert
  • Ming Zhang
  • Intel Corporation
  • Acknowledgment Kee Sup Kim, Jose Maiz, TM Mak,
    Quan Shi

2
Outline
  • Introduction
  • Logic soft error modeling challenges
  • Logic soft error protection
  • Conclusion

3
What Are Soft Errors?
  • Transient errors
  • Single Event Upsets, SEU, SER
  • Logic value changed (0 ? 1, 1 ? 0)
  • Memory, flip-flops, combinational logic
  • Causes
  • Alpha particles from packaging
  • Neutrons from cosmic rays

4
Logic Soft Errors
Static combinational logic
  • Soft errors affecting
  • Flip-flops
  • Latches
  • Combinational logic
  • Memory soft errors
  • Well understood
  • ECC

Unprotected memory
Flip- flops
Soft Error rate contributions
5
System Effects of Logic Soft Errors
  • Benign
  • e.g., Dead instructions anyway
  • e.g., Soft errors in network packets
  • Protocol assisted correction retransmit
  • Silent data corruption
  • Undetected incorrect results
  • e.g., 20,000 interpreted as 3,616
  • Detected but uncorrected recovery required

6
Logic Soft Errors Moores Law
  • Soft error rate per unprotected chip
  • Roughly double every generation
  • Reason Double transistor count

FLIP-FLOP PROTECTION
REQUIRED
Undetected Soft Error Rate Per chip
Enterprise Undetected Soft Error Rate Goal
Logic
Technology Generation
7
Outline
  • Introduction
  • Logic soft error modeling challenges
  • Latches flip-flops Well understood
  • Combinational logic OPEN
  • System-level effects OPEN
  • Logic soft error protection
  • Conclusion

8
Soft Errors in Combinational Logic
  • Logical masking

A 1

1
S 1
1

OUT
1

B 1
9
Soft Errors in Combinational Logic
  • Electrical masking

A 0

0
S 1
OUT

1

B 1
10
Soft Errors in Combinational Logic
  • Latching window masking

A 0

0
S 1

D
Q
CK
1

B 1
Setup time
11
Architectural Vulnerability Factor (AVF) aka
Logic Derating
  • Probability (Given soft error event is BENIGN)
  • No impact on architectural state
  • Data registers
  • Average active variable occupancy
  • Pipeline flip-flops
  • Average committed instruction occupancy

MAJOR CHALLENGE AUTOMATED AVF ESTIMATION
12
Outline
  • Introduction
  • Logic soft error modeling challenges
  • Logic soft error protection
  • Conclusion

13
Error Protection Low Hanging Fruits
  • Selective node engineering
  • Increased node capacitance
  • Forward body bias
  • Soft error rate reduction 40
  • Costs
  • Power None to 3
  • Performance None
  • Area 0.8 3

Selective Node Engineering Data
14
Major Error Protection Techniques
  • Circuit hardening Circuit design literature
  • Redundancy Fault-tolerance literature
  • Duplication, parity codes
  • Multi-threading
  • Software techniques (SIHFT)
  • Built In Soft Error Resilience New technique
  • Soft error rate reduction at least 20X
  • Costs discussed later

15
Built-In Soft Error Resilience (BISER)
  • Soft error resilience
  • Detect flip-flop soft error
  • Error trapping not covered today
  • Correct flip-flop soft error
  • Error blocking todays focus
  • Hardware reuse paradigm
  • Existing on-chip resources reused
  • e.g., Scan Testability structures

Ref IEEE Computer, Feb. 2005
16
Scan Flip-flop Design ITJ 2004
Scan Clock B
Scan Portion
Scan Data
1D
1D
C1
Scan Output
Q
Scan Clock A
Q
C1
2D
Transfer
C2
1D
Update
C1
System Output
Q
System Data
1D
2D
Q
C2
C1
System Flip
-
flop
System Clock
17
Error Resilient Mode
Scan / Checking Flip-flop
Scan Clock B

Scan Data
1D
1D
C1
Scan / Duplex Output
Q
Q
Scan Clock A
C1
2D
C2

Capture 1
1D
Update
C1
System Output
Q
System Data
1D
2D
Q
C2
C1
System Clock
System Flip
-
flop
18
C-element
  • Extensive use in asynchronous circuit design

Vdd
A
OUT
B
Gnd
19
Error Blocking Design
Scan / Checking Flip-flop
Scan Clock B

Scan Data
Scan Output
1D
1D
C1
Q
Q
Scan Clock A
Keeper
2D
C1
C2

Capture 1
Update
1D
C1
Q
System Data
1D
2D
System Output
Q
C2
C1
System Clock
System Flip
-
flop
C-element
20
Error Blocking Operation
Scan / Checking portion
0
1D
Q
C1
0
1
0
Keeper
1D
1
C1
Q
2D
0
System Output
1
C2
Error Blocked
System portion
C-element
21
Economy Mode Core Reuse Enabled
Scan Clock B 1
Scan / Checking Flip-flop

Scan Data
1D
1D
C1
Scan / Duplex Output
Q
Q
Scan Clock A
C1
2D
C2

Capture 0
1D
Update
C1
System Output
Q
System Data
1D
2D
Q
C2
C1
System Clock
System Flip
-
flop
22
Error Blocking Characterization Results
  • Flip-flop soft error rate reduction at least 20X
  • Chip-level analysis 25 flip-flops protected
  • Selected by fault injection

23
Comparison with Classical Techniques
24
Outline
  • Introduction
  • Logic soft error modeling challenges
  • Logic soft error protection
  • Conclusion

25
Conclusion
  • Logic soft errors Major challenge
  • Built-In Soft Error Resilience (BISER)
  • Effective practical
  • Future challenge Automation
  • Combinational logic soft error models
  • System-level impact estimation
  • Selective BISER insertion
  • Maximize protection, Minimize power

26
Thank You!
27
Comparison with Classical Techniques
28
Backup
29
Error Trapping Design
Scan / Checking Flip-flop
Scan Clock B

Scan Data
1D
Scan Output
C1
1D
Scan Clock A
Q
Q
2D
XOR
C1
C2
Capture

XOR
1D
Update
C1
System Output
Q
System Data
1D
2D
Q
C2
C1
System Clock
System Flip
-
flop
30
Trapped Error Signal Observation
  • Shift out using existing slow scan path
  • At fixed intervals
  • e.g., recovery checkpoint
  • e.g., transaction commit point
  • No additional global interconnect
  • K Error detection latency
Write a Comment
User Comments (0)
About PowerShow.com