Automating PostEditing To Improve MT Systems - PowerPoint PPT Presentation

1 / 126
About This Presentation
Title:

Automating PostEditing To Improve MT Systems

Description:

MT output: Assassinated a diplomat Russian and kidnapped other four in Bagdad ... The girl plays the guitar *la muchacha juega la guitarra. la muchacha toca la ... – PowerPoint PPT presentation

Number of Views:45
Avg rating:3.0/5.0
Slides: 127
Provided by: ariadnafo
Category:

less

Transcript and Presenter's Notes

Title: Automating PostEditing To Improve MT Systems


1
Automating Post-Editing To Improve MT Systems
Ariadna Font Llitjós and Jaime Carbonell APE
Workshop, AMTA Boston August 12, 2006
2
Outline
  • Introduction
  • Problem and Motivation
  • Goal and Solution
  • Related Work
  • Theoretical Space
  • Online Error Elicitation
  • Rule Refinement Framework
  • MT Evaluation Framework
  • Conclusions

3
Problem and Motivation
  • MT output Assassinated a diplomat Russian and
    kidnapped other four in Bagdad

4
Problem and Motivation
  • MT output Assassinated a diplomat Russian and
    kidnapped other four in Bagdad
  • Could hire post-editors to correct machine
    translations

5
Problem and Motivation
  • MT output Assassinated a diplomat Russian and
    kidnapped other four in Bagdad
  • Could hire post-editors to correct machine
    translations
  • Expensive time consuming

6
Problem and Motivation
  • MT output Assassinated a diplomat Russian and
    kidnapped other four in Bagdad
  • Not feasible for large amounts of data (google,
    yahoo, etc.)
  • Does not generalize to new sentences

7
Ultimate Goal
  • Automatically Improve MT Quality

8
Two Alternatives
  • Automatic learning of post-editing rules (APE)
  • system independent
  • - several thousands of sentences might need to
    be corrected for the same error
  • Automatic Refinement of MT System
  • attacks the core of the problem
  • system dependent

9
Our Approach
  • Automatically Improve MT Quality
  • by Recycling Post-Editing Information
  • Back to MT Systems

10
Our Solution
SL Asesinado un diplomático ruso y
secuestrados otros cuatro en Bagdad
TL Assassinated a diplomat Russian and
kidnapped other four in Bagdad
  • Get non-expert bilingual speakers to provide
    correction feedback online
  • Make correcting translations easy and fun
  • 5-10 minutes a day ? Large amounts of correction
    data

11
Our Solution
SL Asesinado un diplomático ruso y
secuestrados otros cuatro en Bagdad
TL Assassinated a diplomat Russian and
kidnapped other four in Bagdad
  • Get non-expert bilingual speakers to provide
    correction feedback online
  • Make correcting translations easy and fun
  • 5-10 minutes a day ? Large amounts of correction
    data
  • Feed corrections back into the MT system, so that
    they can be generalized
  • ? System will translate new sentences better

12
Bilingual Post-editing
  • In addition to
  • TL sentence, and
  • Context information, when available
  • It also provides post-editors with
  • Source Language sentence
  • Alignment information

Traditional post-editing
Allegedly a harder task, but we can now get much
more data for free
13
MT Approaches
  • Interlingua

Semantic Analysis
Sentence Planning
Syntactic Parsing
Text Generation
Transfer Rules
Source (e.g. English)
Target (e.g. Spanish)
Direct SMT, EBMT
14
Related Work
Nishida et al. 1988 Corston-Oliver Gammon,
2003 Imamura et al. 2003 Menezes
Richardson, 2001
Brill, 1993 Gavaldà, 2000
Callison-Burch, 2004
Fixing Machine Translation
Rule Adaptation
Su et al. 1995
  • Our Approach

Post-editing
Non-expert user feedback Provides relevant
reference translations Generalizes over unseen
data
Allen 2003 Allen Hogan, 2000 Knight
Chander, 1994
15
System Architecture
INPUT TEXT
OUTPUT TEXT
16
Main Technical Challenge
Simple user edits to MT output
Mapping between
Blame assignment Rule Modifications Lexical
Expansions
Improved Translation Rules
17
Outline
  • Introduction
  • Theoretical Space
  • Error classification
  • Limitations
  • Online Error Elicitation
  • Rule Refinement Framework
  • MT Evaluation Framework
  • Conclusions

18
Error Typology for Automatic Rule Refinement
(simplified)
  • Missing word
  • Extra word
  • Wrong word order
  • Incorrect word

Local vs Long distance Word vs. phrase Word
change
Sense Form Selectional restrictions Idiom
Missing constraint Extra constraint
19
Error Typology for Automatic Rule Refinement
(simplified)
  • Missing word
  • Extra word
  • Wrong word order
  • Incorrect word

Local vs Long distance Word vs. phrase Word
change
Sense Form Selectional restrictions Idiom
Missing constraint Extra constraint
20
Limitations of Approach
  • The SL sentence needs to be fully parsed by the
    translation grammar.
  • current approach needs rules to refine
  • Depend on bilingual speakers ability to detect
    MT errors.

21
Outline
  • Introduction
  • Theoretical Space
  • Online Error Elicitation
  • Translation Correction Tool
  • Rule Refinement Framework
  • MT Evaluation Framework
  • Conclusions

22
TCTool (Demo)
Interactive elicitation of error information
  • Add a word
  • Delete a word
  • Modify a word
  • Change word order

Actions
23
  • Expanding the lexicon
  • 1. OOV words/idoms
  • Hamas cabinet calls a truce to avoid Israeli
    retaliation
  • ? El gabinete de Hamas llama un TRUCE para
    evitar la venganza israelí ? acuerda una
    tregua
  • 2. New Word Form
  • The children fell ? los niños cayeron
  • ? los niños se cayeron
  • 3. New Word Sense
  • The girl plays the guitar ? la muchacha juega la
    guitarra
  • ? la muchacha toca la guitarra

24
  • Refining the grammar
  • 4. Add Agreement constraints
  • I see the red car ? veo el coche roja ? veo el
    coche rojo
  • 5. Add Word or Constituent
  • You saw the woman ? viste la mujer ? viste a la
    mujer
  • 6. Move Constituent Order
  • I saw you ? yo vi te ? yo te vi

25
SL Gaudí was a great artist TL Gaudí era un
artista grande
change constituent order
Change Word Order
Edit Word
Adding new form to lexicon
CTL Gaudí era un gran artista
26
Eng2Spa User Study
Interactive elicitation of error information
  • LREC 2004
  • MT error classification ? 9 linguistically-motivat
    ed classes Flanagan, 1994, White et al. 1994
  • word order, sense, agreement error (number,
    person, gender, tense), form, incorrect word and
    no translation

27
Outline
  • Introduction
  • Theoretical Space
  • Online Error Elicitation
  • Rule Refinement Framework
  • RR operations
  • Formalizing Error information
  • Refinement Steps (Example)
  • MT Evaluation Framework
  • Conclusions

28
Types of Refinement Operations
Automatic Rule Adaptation
  • 1. Refine a translation rule
  • R0 ? R1 (change R0 to make it more specific
    or more general)

29
Types of Refinement Operations
Automatic Rule Adaptation
  • 1. Refine a translation rule
  • R0 ? R1 (change R0 to make it more specific
    or more general)

R0
una casa bonito
a nice house
R1
N gender ADJ gender
a nice house
una casa bonita
30
Types of RefinementOperations (2)
Automatic Rule Adaptation
  • 2. Bifurcate a translation rule
  • R0 ? R0 (same, general rule)

R0
una casa bonita
a nice house
31
Types of RefinementOperations (2)
Automatic Rule Adaptation
  • 2. Bifurcate a translation rule
  • R0 ? R0 (same, general rule)
  • ? R1 (add a new more specific rule)

R0
una casa bonita
a nice house
32
Formalizing Error Information
Automatic Rule Adaptation
  • Wi error
  • Wi correction
  • Wc clue word

33
Triggering Feature Detection
Automatic Rule Adaptation
  • Comparison at the feature level to detect
    triggering feature(s)
  • Delta function ?(Wi,Wi)
  • Examples
  • ?(bonito,bonita) gender
  • ?(comiamos,comia) person,number
  • ?(mujer,guitarra) ?
  • If ? set is empty, need to
  • postulate a new binary feature (feat_i ,-)

gen masc
gen fem
34
Refinement Steps
Error Correction Elicitation
Finding Triggering Features
Blame Assignment
Rule Refinement
35
Refinement Steps
Error Correction Elicitation
Finding Triggering Features
Blame Assignment
Rule Refinement
36
1. Error Correction Elicitation
Change Word Order
Wi grande
Edit Word
Wi gran
SL Gaudí was a great artist TL Gaudí era un
artista grande
CTL Gaudí era un gran artista
37
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Feature
Blame Assignment
Rule Refinement
38
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
Blame Assignment
Rule Refinement
39
2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ?
40
2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? ? need to
postulate a new binary feature feat1
41
2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? ? need to
postulate a new binary feature feat1 feat1
type pre-nominal feat1 -
type post-nominal
42
2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? new binary
feature feat1
REFINE
43
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
Rule Refinement
44
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
Rule Refinement
45
3. Blame Assignment
  • (from transfer and generation tree)
  • tree lt( S,1 (NP,2 (N,51 "GAUDI") )
  • (VP,3 (VB,2 (AUX,172 "ERA") )
  • (NP,8 (DET,03 "UN")
  • (N,45 "ARTISTA")
  • (ADJ,54
    "GRANDE"))) )gt

46
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 N ADJ ? ADJ N
Rule Refinement
47
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 N ADJ ? ADJ N
Rule Refinement
48
4. Rule Refinement
NP,8
un artista gran
a great artist
BIFURCATE
REFINE
ADJ feat1 c
49
4. Rule Refinement
NP,8
un artista gran
a great artist
50
Refinement Steps
Error Correction Elicitation
  • Edit Wi grande
    Wi gran
  • 2. Change Word Order artista gran ? gran artista

Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 (N ADJ ? ADJ N)
Rule Refinement
NP,8 ADJ N ? N ADJ NP,8 ADJ N ? ADJ N
ADJ feat 1 c
51
Correct Translation Output
  • NP,8 ADJ(great-grande)
  • feat1 -
  • NP,8 ADJ(great-gran)
  • ADJ feat1 c feat1

Gaudi era un artista grande Gaudi era un gran
artista Gaudi era un grande artista
52
Done? Not yet
  • NP,8 (R0) ADJ(grande)
  • feat1 -
  • NP,8 (R1) ADJ(gran)
  • feat1 c feat1
  • Need to restrict application of general rule (R0)
    to just post-nominal ADJ

un artista grande un artista gran un gran artista
un grande artista
53
Add Blocking Constraint
  • NP,8 (R0) ADJ(grande)
  • feat1 - feat1 -
  • NP,8 (R1) ADJ(gran)
  • feat1 c feat1
  • Can we also eliminate incorrect translations
    automatically?

un artista grande un artista gran un gran
artista un grande artista
54
Making the grammar tighter
  • If Wc artista
  • Add feat1 to N(artista)
  • Add agreement constraint to NP,8 (R0) between N
    and ADJ ((N feat1) (ADJ feat1))

un artista grande un artista gran un gran
artista un grande artista
55
Generalization Power abstract feature (feat_i)
Irina is a great friend ? Irina es
una gran amiga (instead of
Irina es una amiga grande)
ADJ feat1
Juan is a great person ? Juan es una gran
persona (instead of Juan
es una persona grande)
ADJ feat1
una gran persona
a great person
56
Generalization Power
  • When triggering feature already exists in the
    grammar/lexicon (POS, gender, number, etc.)
  • I see the red car ? veo un auto roja

ADJ gender N gender
o
? veo un auto rojo
gender masc
gender fem
gender masc
Refinements generalize to all lexical entries
that have that feature (gender)
gender fem
The yellow houses are his ? las casas amarillas
son suyas (before las casas amarillos son
suyas)
gender fem
We need to go to a dark cave ? tenemos que ir a
una cueva oscura (before cueva oscuro)
57
Outline
  • Introduction
  • Theoretical Space
  • Online Error Elicitation
  • Rule Refinement Framework
  • MT Evaluation Framework
  • Relevant (and free) human reference translations
  • Not punished by BLEU, NIST and METEOR.
  • Conclusions

58
MT Evaluation Framework
Multiple Human Reference Translations
relevant to specific MT system errors
Bilingual speakers
- MT systems not be punished for picking a
different synonym or morpho-syntactic variation
by BLEU and METEOR. - Similar to what Snover
et al. 2006 propose (HTER).
59
MT Evaluation continued
  • Did the refined MT system generate translation as
    corrected by the user (CTL)?
  • ? Simple recall 0CTL not in output, 1CTL in
    output
  • Did the number of bad translations (implicitly
    identified by users) generated by the system
    decrease?
  • Precision at rank k (k5 in TCTool)
  • Did the system successfully managed to reduce
    ambiguity (number of alternative translations)?
  • ? Reduction ratio

60
Outline
  • Introduction
  • Theoretical Space
  • Online Error Elicitation
  • Rule Refinement Framework
  • MT Evaluation Framework
  • Conclusions
  • Impact on MT systems
  • Work in Progress and Contributions
  • Future Work

61
Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
OUTPUT TEXT
62
Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Online Translation Correction Tool
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
63
Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
64
Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
65
Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Online Translation Correction Tool
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
OUTPUT TEXT
66
TCTool can help improve
  • Rule-based MT (grammar, lexicon, LM)
  • EBMT (examples, lexicon, alignments)
  • Statistical MT (lexicon, and alignments)
  • relevant annotated data
  • ? develop smarter training algorithms

Panel this afternoon 345-445pm
67
Work in Progress
  • Finalizing regression and test sets to perform
    rigorous evaluation of approach
  • Handling incorrect Correction Instances
  • Have multiple users correct the same set of
    sentences
  • ? filter out noise (threshold 90 users agree)
  • User study with multiple users
  • ? evaluate improvement after refinements

68
Contributions so far
  • An efficient online GUI to display translations
    and alignments and solicit pinpoint fixes from
    non-expert bilingual users.
  • New Framework to improve MT quality an
    expandable set of rule refinement operations
  • MT Evaluation Framework, which provides relevant
    reference translations

69
Future work
  • Explore other ways to make the interaction with
    users more fun
  • Games with a purpose
  • Von Ahn and Blum, 2004 2006

70
Future work
  • Explore other ways to make the interaction with
    users more fun
  • Games with a purpose
  • Von Ahn and Blum, 2004 2006
  • Second Language Learning

71
Questions?
72
(No Transcript)
73
Backup slides
  • TCTool next step
  • What if users corrections are different (user
    noise)?
  • More than one correction per sentence?
  • Wc example
  • Data set
  • Where is appropriate to refine vs bifurcate?
  • Lexical bifurcate
  • Is the refinement process invariable?

74
Backup slides (ii)
  • TCTool Demo Simulation
  • RR operation patterns
  • Automatic Evaluation feasibility study
  • AMTA paper results
  • User studies map
  • Precision, recall, F1
  • NIST, BLEU, METEOR

75
Backup slides (iii)
  • Done? Not yet (blocking constraints)
  • Minimal pair example
  • Batch mode implementation
  • Interactive mode implementation
  • User studies
  • Evaluation of refined output
  • Another Generalization Example
  • Avenue Architecture
  • Technical Challenges
  • Rules Formalism

76
Player The Teacher
  • Goal teach the MT system to translate correctly
  • Different levels of expertise
  • Beginner language learning and improving
    (labeled data)
  • Intermediate-Advanced provide labeled data to
    improve the system and for beginner levels

77
Two players cooperation
MT
  • In English to Spanish MT
  • Player 1 Spanish native speaker learning
    English
  • Player 2 English native speaker learning
    Spanish

back to main
78
Translation rule example
  • NP,8
  • NPNP DET ADJ N -gt DET N ADJ
  • ( (X1Y1) (X2Y3) (X3Y2)
  • ((x0 def) (x1 def))
  • (x0 x3)
  • (y2 x3)
  • ((y1 agr) (y2 agr))
  • ((y3 agr) (y2 agr))
  • )

79
Translation rule example
Rule ID
  • NP,8 SL side (English) TL side (Spanish)
  • X0 Y0 X1 X2 X3 Y1 Y2 Y3
  • NPNP DET ADJ N -gt DET N ADJ
  • ( (X1Y1) (X2Y3) (X3Y2)
  • ((x0 def) (x1 def))
  • (x0 x3)
  • (y2 x3)
  • ((y1 agr) (y2 agr))
  • ((y3 agr) (y2 agr))
  • )

analysis transfer transfer
generation generation
80
Translation rule example
  • NP,8
  • X0 Y0 X1 X2 X3 Y1 Y2 Y3
  • NPNP DET ADJ N -gt DET N ADJ
  • ( (X1Y1) (X2Y3) (X3Y2)
  • ((x0 def) (x1 def)) passing definiteness
    up
  • (x0 x3) X3 is the head of X0
  • (y2 x3) pass features of head to Y2
  • ((y1 agr) (y2 agr)) det-noun agreement
  • ((y3 agr) (y2 agr)) adj-noun agreement
  • )

back to main
81
Done? Not yet
Automatic Rule Adaptation
  • NP,8 (R0) ADJ(grande)
  • feat1 -
  • NP,8 (R1) ADJ(gran)
  • feat1 c feat1
  • Need to restrict application of general rule (R0)
    to just post-nominal ADJ

un artista grande un artista gran un gran artista
un grande artista
82
Add Blocking Constraint
Automatic Rule Adaptation
  • NP,8 (R0) ADJ(grande)
  • feat1 - feat1 -
  • NP,8 (R1) ADJ(gran)
  • feat1 c feat1
  • Can we also eliminate incorrect translations
    automatically?

un artista grande un artista gran un gran
artista un grande artista
83
Making the grammar tighter
Automatic Rule Adaptation
  • If Wc artista
  • Add feat1 to N(artista)
  • Add agreement constraint to NP,8 (R0) between N
    and ADJ ((N feat1) (ADJ feat1))

un artista grande un artista gran un gran
artista un grande artista
back to main
84
Example Requiring Minimal Pair
Automatic Rule Adaptation
Proposed Work
  • 1. Run SL sentence through the transfer engine
  • I see them ? veo los Correct TL los veo
  • 2. Wi los but no Wi nor Wc
  • Need a minimal pair to determine appropriate
    refinement
  • I see cars ? veo autos
  • 3. Triggering feature(s) ?(veo los, veo
    autos)
  • ?(los,autos) pos
  • PRON(los)pospron N(autos)posn

back to main
85
Avenue Architecture
Elicitation
Rule Learning
Run-Time System
Rule Refinement
Morphology
Translation Correction Tool
Word-Aligned Parallel Corpus
INPUT TEXT
Run Time Transfer System
Rule Refinement Module
Elicitation Corpus
Decoder
Elicitation Tool
Lexical Resources
OUTPUT TEXT
back to main
86
Technical Challenges
Automatic Evaluation of Refinement process
Elicit minimal MT information from non-expert
users
back to main
87
Batch Mode Implementation
Automatic Rule Adaptation
Proposed Work
  • Given a set of user corrections, apply refinement
    module.
  • For Refinement Operations of errors that can be
    refined fully automatically using
  • Correction information only
  • 2. Correction and error information

error type, clue word
88
Rule Refinement Operations
89
1. Correction info only
Rule Refinement Operations
It is a nice house Es una casa bonito
? Es una casa bonita
90
2. Correction and Error info
Rule Refinement Operations
PP ? PREP NP
I am proud of you Estoy orgullosa de tu
? Estoy orgullosa de ti
back to main
91
Interactive Mode Implementation
Automatic Rule Adaptation
Proposed Work
  • Extra error information is required to determine
    triggering context automatically
  • ? Need to give other relevant sentences to the
    user at run-time (minimal pairs)
  • For Refinement Operations of errors that can be
    refined fully automatically but
  • 3. require a further user interaction

92
3. Further user interaction
Rule Refinement Operations
I see them Veo los ? Los veo
back to main
93
Refining and Adding Constraints
Proposed Work
  • VP,3 VP NP ? VP NP (veo los, veo autos)
  • VP,3 VP NP ? NP VP NP pos c pron
  • (los veo, autos veo)
  • Percolate triggering features up to the
    constituent level
  • NP PRON ? PRON NP pos PRON pos
  • Block application of general rule (VP,3)
  • VP,3 VP NP ? VP NP NP pos (NOT pron)
  • veo los, veo autos (los veo, autos veo)

94
User Studies
Proposed Work
  • TCTool new MT classification (Eng2Spa)
  • Different language pair
  • Mapudungun or Quechua ? Spanish
  • Batch vs Interactive mode
  • Amount of information elicited
  • just corrections vs error information

back to main
95
Evaluation of Refined MT Output
  • 1. Evaluate best translation ? Automatic
    evaluation metrics (BLEU, NIST, METEOR)
  • 2. Evaluate translation candidate list size ?
    precision (includes parsimony)

96
1. Evaluate Best translation
  • Hypothesis file (translations to be evaluated
    automatically)
  • Raw MT output
  • Best sentence (picked by user to be correct or
    requiring the least amount of correction)
  • Refined MT output
  • Use METEOR score at sentence level to pick best
    candidate from the list
  • ? Run all automatic metrics on the new hypothesis
    file using user corrections as reference
    translations.

97
2. Evaluate Translation Candidate List
  • Precision tp binary 0,1 (1 user
    correction)
  • tp fp total number of TLs

SL TL TL X TL X TL X TL X
SL TL X TL X TL X
SL TL TL X TL X TL X TL
SL TL TL X TL X
SL TL TL X
?
?

?
? user correction
?
?
?

1/3
1/2
0/3
1/5
1/5
back to main
98
Generalization Power
  • When triggering feature already exists in the
    feature language (pos, gender, number, etc.)
  • I see them ? veo los ? los veo
  • - I love him ? lo amo (before amo lo)
  • - They called me yesterday ? me llamaron ayer
    (before llamaron me ayer)
  • - Mary helps her with her homework
  • ? Maria le ayuda con sus tareas
  • (before Maria ayuda le con sus tareas)

back to main
99
Precision, Recall and F1
  • Precision tp
  • tp fp (selected, incorrect)
  • Recall tp
  • tp fn (correct, not selected)
  • F1 2 PR
  • (P R)

back to main
100
Automatic Evaluation Metrics
  • BLEU averages the precision for unigram, bigram
    and up to 4-grams and applies a length penalty
    Papineni, 2001.
  • NIST instead of n-gram precision the information
    gain from each n-gram is taken into account NIST
    2002.
  • METEOR assigns most of the weight to recall,
    instead of precision and uses stemming Lavie,
    2004

back to main
101
Data Set
Proposed Work
  • Split development set (400 sentence) into
  • Dev set ? Run User Studies
  • Develop Refinement Module
  • Validate functionality
  • Test set ? Evaluate effect of Refinement
    operations
  • Wild test set (from naturally occurring text)
  • Requirement need to be fully parsed by grammar

back to questions
102
Refine vs Bifurcate
  • Batch mode ? bifurcate (no way to tell if the
    original rule should never apply)
  • Interactive mode ? refine (change original rule)
    if can get enough evidence that original rule
    never applies.
  • Corrections involving agreement constraints seem
    to hold for all cases ? refine (Open
    research question)

back to questions
103
More than one correction/sentence
  • A B
  • TL X X
  • A
  • 1st X
  • B
  • 2nd X
  • Tetris approach
  • to Automatic Rule Refinement
  • Assumption different corrections to different
    words ? different error

back to questions
104
Exception structural divergences
  • He danced her out of the room
  • ? La bailó fuera de la habitación
  • her he-danced out of the
    room
  • ? La sacó de la habitación bailando
  • her he-take-out of the room
    dancing
  • Have no way of knowing that these corrections are
    related
  • Do one error at a time, if TQ decreases over the
    test set, hypothesize that its a divergence
  • Feed to the Rule Learner as a new (manually
    corrected) training example

back to questions
105
Constituent order change
  • I gave him the tools
  • ? di a él las herramientas
  • I-gave to him the tools
  • ? le di las herramientas a él
  • him I-gave the tools to him
  • desired refinement
  • VP?VP PP(a PRON) NP VP?VP NP PP(a PRON)
  • ? Can extract constituent information from MT
    output (parse tree) and treat as one
    error/correction

106
More than one correction/error
  • AB
  • TL X
  • Example edit and move same word
    (like gran, bailó)
  • Occams razor
  • Assumption both corrections are part of the
    same error

back to questions
107
Wc Example
  • I am proud of you
  • ? Estoy orgullosa de tu Wcde tu?ti
  • I-am proud of you-nom
  • ? Estoy orgullosa de ti
  • I-am proud of you-oblic
  • Without Wc information, would need to increase
    the ambiguity of the grammar significantly!
  • you? ti I love you ? ti quiero (te
    quiero,)
  • you read ? ti lees (tu lees,)

back to questions
108
Lexical bifurcate
  • Should the system copy all the features to the
    new entry?
  • Good starting point
  • Might want to copy just a subset of features
    (possibly POS-dependent)
  • ? Open Research Question

back to questions
109
Automatic Rule Adaptation
110
Automatic Rule Adaptation
SL best TL picked by user
111
Automatic Rule Adaptation
Changing word order
112
Automatic Rule Adaptation
Changing grande into gran
113
Automatic Rule Adaptation
back to main
114
Automatic Rule Adaptation
1
2
3
115
Input to RR module
Automatic Rule Adaptation
  • User correction log file
  • Transfer engine output ( parse tree)

sl I see them tl VEO LOS tree lt((S,0 (VP,3
(VP,1 (V,12 "VEO") ) (NP,0 (PRON,23
"LOS") ) ) ) )gt
sl I see cars tl VEO AUTOS tree lt((S,0 (VP,3
(VP,1 (V,12 "VEO") ) (NP,2 (N,13
AUTOS") ) ) ) )gt
back to main
116
Types of RR Operations
Automatic Rule Adaptation
Completed Work
  • Grammar
  • R0 ? R0 R1 R0 constr CovR0 ?
    CovR0,R1
  • R0 ? R1R0 constr -
  • ? R2R0 constrc CovR0 ?
    CovR1,R2
  • R0 ? R1 R0 constr CovR0 ? CovR1
  • Lexicon
  • Lex0 ? Lex0 Lex1Lex0 constr
  • Lex0 ? Lex1Lex0 constr
  • Lex0 ? Lex0 Lex1?Lex0 ? TLword
  • ? ? Lex1 (adding lexical item)

bifurcate
refine
back to main
117
Manual vs Learned Grammars
Automatic Rule Adaptation
  • Manual inspection
  • Automatic MT Evaluation
  • AMTA 2004

back to main
118
Human Oracle experiment
Automatic Rule Adaptation
Completed Work
  • As a feasibility experiment, compared raw output
    with manually corrected MT
  • statistically significant (confidence interval
    test)
  • These is an upper-bound on how much difference we
    should expect any refinement approach to make.

back to main
119
Invariable process?
  • Rule Refinement process is not invariable ? Order
    of the corrected sentences input to the system
    matters
  • Example
  • 1st gran artista ? bifurcate (2 rules)
  • 2nd casa bonito ? add agr constraint to only 1
    rule (original, general rule)
  • the specific rule is still incorrect (missing agr
    constraint)
  • 1st casa bonito ? add agr constraint
  • 2nd gran artista ? bifurcate
  • ? both rules have agreement constraint (optimal
    order)

back to questions
120
User noise?
  • Solution
  • Have several users evaluate and correct the same
    test set
  • ? threshold, 90 agreement
  • - correction
  • - error information (type, clue word)
  • Only modify the grammar if enough evidence of
    incorrect rule.

back to questions
121
User Studies Map
Proposed Work
Batch mode
Only Corrections
Learned grammars
RR module
Correctionserror info
Eng2spa
X
X
Manual grammars
Mapu2Spa
X
interactive mode
Active learning
back to main
122
Recycle corrections of Machine Translation output
back into the system by refining and expanding
existing translation rules
123
1. Correction info only
Rule Refinement Operations
It is a nice house Es una casa bonito
? Es una casa bonita
John and Mary fell Juan y Maria ? cayeron
? Juan y Maria se cayeron
124
1. Correction info only
Rule Refinement Operations
J y M cayeron ? J y M se cayeron
Es una casa bonito ? Es una casa bonita
Gaudi was a great artist Gaudi era un artista
grande ? Gaudi era un gran artista
I will help him fix the car Ayudaré a él a
arreglar el auto ? Le ayudare a
arreglar el auto
125
1. Correction info only
Rule Refinement Operations
I would like to go Me gustaria que ir
? Me gustaria ? ir
I will help him fix the car Ayudaré a él a
arreglar el auto ? Le ayudare a
arreglar el auto
126
2. Correction and Error info
Rule Refinement Operations
PP ? PREP NP
I am proud of you Estoy orgullosa tu
? Estoy orgullosa de ti
127
Focus 3
Rule Refinement Operations
Wally plays the guitar Wally juega la
guitarra ? Wally toca la
guitarra
I saw the woman Vi ? la mujer ?
Vi a la mujer
I see them Veo los ? Los veo
128
Outside Scope of Thesis
Rule Refinement Operations
John read the book A Juan leyó el libro
? ? Juan leyó el libro
Where are you from? Donde eres tu de?
? De donde eres tu?
Write a Comment
User Comments (0)
About PowerShow.com