Title: Automating PostEditing To Improve MT Systems
1Automating Post-Editing To Improve MT Systems
Ariadna Font Llitjós and Jaime Carbonell APE
Workshop, AMTA Boston August 12, 2006
2Outline
- Introduction
- Problem and Motivation
- Goal and Solution
- Related Work
- Theoretical Space
- Online Error Elicitation
- Rule Refinement Framework
- MT Evaluation Framework
- Conclusions
3Problem and Motivation
- MT output Assassinated a diplomat Russian and
kidnapped other four in Bagdad
4Problem and Motivation
- MT output Assassinated a diplomat Russian and
kidnapped other four in Bagdad - Could hire post-editors to correct machine
translations
5Problem and Motivation
- MT output Assassinated a diplomat Russian and
kidnapped other four in Bagdad - Could hire post-editors to correct machine
translations
6Problem and Motivation
- MT output Assassinated a diplomat Russian and
kidnapped other four in Bagdad - Not feasible for large amounts of data (google,
yahoo, etc.) - Does not generalize to new sentences
7Ultimate Goal
- Automatically Improve MT Quality
-
8Two Alternatives
- Automatic learning of post-editing rules (APE)
- system independent
- - several thousands of sentences might need to
be corrected for the same error - Automatic Refinement of MT System
- attacks the core of the problem
- system dependent
9Our Approach
- Automatically Improve MT Quality
- by Recycling Post-Editing Information
- Back to MT Systems
-
10Our Solution
SL Asesinado un diplomático ruso y
secuestrados otros cuatro en Bagdad
TL Assassinated a diplomat Russian and
kidnapped other four in Bagdad
- Get non-expert bilingual speakers to provide
correction feedback online - Make correcting translations easy and fun
- 5-10 minutes a day ? Large amounts of correction
data
11Our Solution
SL Asesinado un diplomático ruso y
secuestrados otros cuatro en Bagdad
TL Assassinated a diplomat Russian and
kidnapped other four in Bagdad
- Get non-expert bilingual speakers to provide
correction feedback online - Make correcting translations easy and fun
- 5-10 minutes a day ? Large amounts of correction
data - Feed corrections back into the MT system, so that
they can be generalized - ? System will translate new sentences better
12Bilingual Post-editing
- In addition to
- TL sentence, and
- Context information, when available
- It also provides post-editors with
- Source Language sentence
- Alignment information
Traditional post-editing
Allegedly a harder task, but we can now get much
more data for free
13MT Approaches
Semantic Analysis
Sentence Planning
Syntactic Parsing
Text Generation
Transfer Rules
Source (e.g. English)
Target (e.g. Spanish)
Direct SMT, EBMT
14Related Work
Nishida et al. 1988 Corston-Oliver Gammon,
2003 Imamura et al. 2003 Menezes
Richardson, 2001
Brill, 1993 Gavaldà, 2000
Callison-Burch, 2004
Fixing Machine Translation
Rule Adaptation
Su et al. 1995
Post-editing
Non-expert user feedback Provides relevant
reference translations Generalizes over unseen
data
Allen 2003 Allen Hogan, 2000 Knight
Chander, 1994
15System Architecture
INPUT TEXT
OUTPUT TEXT
16Main Technical Challenge
Simple user edits to MT output
Mapping between
Blame assignment Rule Modifications Lexical
Expansions
Improved Translation Rules
17Outline
- Introduction
- Theoretical Space
- Error classification
- Limitations
- Online Error Elicitation
- Rule Refinement Framework
- MT Evaluation Framework
- Conclusions
18Error Typology for Automatic Rule Refinement
(simplified)
- Missing word
- Extra word
- Wrong word order
- Incorrect word
Local vs Long distance Word vs. phrase Word
change
Sense Form Selectional restrictions Idiom
Missing constraint Extra constraint
19Error Typology for Automatic Rule Refinement
(simplified)
- Missing word
- Extra word
- Wrong word order
- Incorrect word
Local vs Long distance Word vs. phrase Word
change
Sense Form Selectional restrictions Idiom
Missing constraint Extra constraint
20Limitations of Approach
- The SL sentence needs to be fully parsed by the
translation grammar. - current approach needs rules to refine
- Depend on bilingual speakers ability to detect
MT errors.
21Outline
- Introduction
- Theoretical Space
- Online Error Elicitation
- Translation Correction Tool
- Rule Refinement Framework
- MT Evaluation Framework
- Conclusions
22TCTool (Demo)
Interactive elicitation of error information
- Add a word
- Delete a word
- Modify a word
- Change word order
Actions
23- Expanding the lexicon
- 1. OOV words/idoms
- Hamas cabinet calls a truce to avoid Israeli
retaliation - ? El gabinete de Hamas llama un TRUCE para
evitar la venganza israelí ? acuerda una
tregua - 2. New Word Form
- The children fell ? los niños cayeron
- ? los niños se cayeron
- 3. New Word Sense
- The girl plays the guitar ? la muchacha juega la
guitarra - ? la muchacha toca la guitarra
24- Refining the grammar
- 4. Add Agreement constraints
- I see the red car ? veo el coche roja ? veo el
coche rojo - 5. Add Word or Constituent
- You saw the woman ? viste la mujer ? viste a la
mujer - 6. Move Constituent Order
- I saw you ? yo vi te ? yo te vi
25SL Gaudí was a great artist TL Gaudí era un
artista grande
change constituent order
Change Word Order
Edit Word
Adding new form to lexicon
CTL Gaudí era un gran artista
26Eng2Spa User Study
Interactive elicitation of error information
- LREC 2004
- MT error classification ? 9 linguistically-motivat
ed classes Flanagan, 1994, White et al. 1994 - word order, sense, agreement error (number,
person, gender, tense), form, incorrect word and
no translation -
27Outline
- Introduction
- Theoretical Space
- Online Error Elicitation
- Rule Refinement Framework
- RR operations
- Formalizing Error information
- Refinement Steps (Example)
- MT Evaluation Framework
- Conclusions
28Types of Refinement Operations
Automatic Rule Adaptation
- 1. Refine a translation rule
- R0 ? R1 (change R0 to make it more specific
or more general)
29Types of Refinement Operations
Automatic Rule Adaptation
- 1. Refine a translation rule
- R0 ? R1 (change R0 to make it more specific
or more general)
R0
una casa bonito
a nice house
R1
N gender ADJ gender
a nice house
una casa bonita
30Types of RefinementOperations (2)
Automatic Rule Adaptation
- 2. Bifurcate a translation rule
- R0 ? R0 (same, general rule)
-
R0
una casa bonita
a nice house
31Types of RefinementOperations (2)
Automatic Rule Adaptation
- 2. Bifurcate a translation rule
- R0 ? R0 (same, general rule)
- ? R1 (add a new more specific rule)
R0
una casa bonita
a nice house
32Formalizing Error Information
Automatic Rule Adaptation
- Wi error
- Wi correction
- Wc clue word
33Triggering Feature Detection
Automatic Rule Adaptation
- Comparison at the feature level to detect
triggering feature(s) - Delta function ?(Wi,Wi)
- Examples
- ?(bonito,bonita) gender
- ?(comiamos,comia) person,number
- ?(mujer,guitarra) ?
-
- If ? set is empty, need to
- postulate a new binary feature (feat_i ,-)
gen masc
gen fem
34Refinement Steps
Error Correction Elicitation
Finding Triggering Features
Blame Assignment
Rule Refinement
35Refinement Steps
Error Correction Elicitation
Finding Triggering Features
Blame Assignment
Rule Refinement
36 1. Error Correction Elicitation
Change Word Order
Wi grande
Edit Word
Wi gran
SL Gaudí was a great artist TL Gaudí era un
artista grande
CTL Gaudí era un gran artista
37Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Feature
Blame Assignment
Rule Refinement
38Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
Blame Assignment
Rule Refinement
39 2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ?
40 2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? ? need to
postulate a new binary feature feat1
41 2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? ? need to
postulate a new binary feature feat1 feat1
type pre-nominal feat1 -
type post-nominal
42 2. Finding Triggering Features
Delta function difference at the feature
level? ?(grande, gran) ? new binary
feature feat1
REFINE
43Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
Rule Refinement
44Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
Rule Refinement
45 3. Blame Assignment
- (from transfer and generation tree)
- tree lt( S,1 (NP,2 (N,51 "GAUDI") )
- (VP,3 (VB,2 (AUX,172 "ERA") )
- (NP,8 (DET,03 "UN")
- (N,45 "ARTISTA")
- (ADJ,54
"GRANDE"))) )gt
46Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 N ADJ ? ADJ N
Rule Refinement
47Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 N ADJ ? ADJ N
Rule Refinement
48 4. Rule Refinement
NP,8
un artista gran
a great artist
BIFURCATE
REFINE
ADJ feat1 c
49 4. Rule Refinement
NP,8
un artista gran
a great artist
50Refinement Steps
Error Correction Elicitation
- Edit Wi grande
Wi gran - 2. Change Word Order artista gran ? gran artista
Finding Triggering Features
grande feat1 - gran feat1
Blame Assignment
NP,8 (N ADJ ? ADJ N)
Rule Refinement
NP,8 ADJ N ? N ADJ NP,8 ADJ N ? ADJ N
ADJ feat 1 c
51Correct Translation Output
- NP,8 ADJ(great-grande)
- feat1 -
- NP,8 ADJ(great-gran)
- ADJ feat1 c feat1
-
Gaudi era un artista grande Gaudi era un gran
artista Gaudi era un grande artista
52Done? Not yet
- NP,8 (R0) ADJ(grande)
- feat1 -
- NP,8 (R1) ADJ(gran)
- feat1 c feat1
-
- Need to restrict application of general rule (R0)
to just post-nominal ADJ
un artista grande un artista gran un gran artista
un grande artista
53Add Blocking Constraint
- NP,8 (R0) ADJ(grande)
- feat1 - feat1 -
- NP,8 (R1) ADJ(gran)
- feat1 c feat1
-
- Can we also eliminate incorrect translations
automatically?
un artista grande un artista gran un gran
artista un grande artista
54Making the grammar tighter
- If Wc artista
- Add feat1 to N(artista)
- Add agreement constraint to NP,8 (R0) between N
and ADJ ((N feat1) (ADJ feat1))
un artista grande un artista gran un gran
artista un grande artista
55Generalization Power abstract feature (feat_i)
Irina is a great friend ? Irina es
una gran amiga (instead of
Irina es una amiga grande)
ADJ feat1
Juan is a great person ? Juan es una gran
persona (instead of Juan
es una persona grande)
ADJ feat1
una gran persona
a great person
56Generalization Power
- When triggering feature already exists in the
grammar/lexicon (POS, gender, number, etc.) - I see the red car ? veo un auto roja
-
ADJ gender N gender
o
? veo un auto rojo
gender masc
gender fem
gender masc
Refinements generalize to all lexical entries
that have that feature (gender)
gender fem
The yellow houses are his ? las casas amarillas
son suyas (before las casas amarillos son
suyas)
gender fem
We need to go to a dark cave ? tenemos que ir a
una cueva oscura (before cueva oscuro)
57Outline
- Introduction
- Theoretical Space
- Online Error Elicitation
- Rule Refinement Framework
- MT Evaluation Framework
- Relevant (and free) human reference translations
- Not punished by BLEU, NIST and METEOR.
- Conclusions
58MT Evaluation Framework
Multiple Human Reference Translations
relevant to specific MT system errors
Bilingual speakers
- MT systems not be punished for picking a
different synonym or morpho-syntactic variation
by BLEU and METEOR. - Similar to what Snover
et al. 2006 propose (HTER).
59MT Evaluation continued
- Did the refined MT system generate translation as
corrected by the user (CTL)? - ? Simple recall 0CTL not in output, 1CTL in
output - Did the number of bad translations (implicitly
identified by users) generated by the system
decrease? - Precision at rank k (k5 in TCTool)
- Did the system successfully managed to reduce
ambiguity (number of alternative translations)? - ? Reduction ratio
60Outline
- Introduction
- Theoretical Space
- Online Error Elicitation
- Rule Refinement Framework
- MT Evaluation Framework
- Conclusions
- Impact on MT systems
- Work in Progress and Contributions
- Future Work
61Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
OUTPUT TEXT
62Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Online Translation Correction Tool
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
63Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
64Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
65Impact on Transfer-Based MT
Rule Learning and other Resources
Run-Time System
Rule Refinement
INPUT TEXT
Online Translation Correction Tool
Learning Module
Handcrafted rules
Transfer System
Transfer Rules
Translation Candidate Lattice
Morpho-logical analyzer
Lexical Resources
OUTPUT TEXT
66TCTool can help improve
- Rule-based MT (grammar, lexicon, LM)
- EBMT (examples, lexicon, alignments)
- Statistical MT (lexicon, and alignments)
- relevant annotated data
- ? develop smarter training algorithms
Panel this afternoon 345-445pm
67Work in Progress
- Finalizing regression and test sets to perform
rigorous evaluation of approach -
- Handling incorrect Correction Instances
- Have multiple users correct the same set of
sentences - ? filter out noise (threshold 90 users agree)
- User study with multiple users
- ? evaluate improvement after refinements
68Contributions so far
- An efficient online GUI to display translations
and alignments and solicit pinpoint fixes from
non-expert bilingual users. - New Framework to improve MT quality an
expandable set of rule refinement operations - MT Evaluation Framework, which provides relevant
reference translations
69Future work
- Explore other ways to make the interaction with
users more fun - Games with a purpose
- Von Ahn and Blum, 2004 2006
70Future work
- Explore other ways to make the interaction with
users more fun - Games with a purpose
- Von Ahn and Blum, 2004 2006
- Second Language Learning
71Questions?
72(No Transcript)
73Backup slides
- TCTool next step
- What if users corrections are different (user
noise)? - More than one correction per sentence?
- Wc example
- Data set
- Where is appropriate to refine vs bifurcate?
- Lexical bifurcate
- Is the refinement process invariable?
74Backup slides (ii)
- TCTool Demo Simulation
- RR operation patterns
- Automatic Evaluation feasibility study
- AMTA paper results
- User studies map
- Precision, recall, F1
- NIST, BLEU, METEOR
75Backup slides (iii)
- Done? Not yet (blocking constraints)
- Minimal pair example
- Batch mode implementation
- Interactive mode implementation
- User studies
- Evaluation of refined output
- Another Generalization Example
- Avenue Architecture
- Technical Challenges
- Rules Formalism
76Player The Teacher
- Goal teach the MT system to translate correctly
- Different levels of expertise
- Beginner language learning and improving
(labeled data) - Intermediate-Advanced provide labeled data to
improve the system and for beginner levels
77Two players cooperation
MT
- In English to Spanish MT
- Player 1 Spanish native speaker learning
English - Player 2 English native speaker learning
Spanish
back to main
78Translation rule example
- NP,8
- NPNP DET ADJ N -gt DET N ADJ
- ( (X1Y1) (X2Y3) (X3Y2)
- ((x0 def) (x1 def))
- (x0 x3)
- (y2 x3)
- ((y1 agr) (y2 agr))
- ((y3 agr) (y2 agr))
- )
79Translation rule example
Rule ID
- NP,8 SL side (English) TL side (Spanish)
- X0 Y0 X1 X2 X3 Y1 Y2 Y3
- NPNP DET ADJ N -gt DET N ADJ
- ( (X1Y1) (X2Y3) (X3Y2)
- ((x0 def) (x1 def))
- (x0 x3)
- (y2 x3)
- ((y1 agr) (y2 agr))
- ((y3 agr) (y2 agr))
- )
analysis transfer transfer
generation generation
80Translation rule example
- NP,8
- X0 Y0 X1 X2 X3 Y1 Y2 Y3
- NPNP DET ADJ N -gt DET N ADJ
- ( (X1Y1) (X2Y3) (X3Y2)
- ((x0 def) (x1 def)) passing definiteness
up - (x0 x3) X3 is the head of X0
- (y2 x3) pass features of head to Y2
- ((y1 agr) (y2 agr)) det-noun agreement
- ((y3 agr) (y2 agr)) adj-noun agreement
- )
back to main
81Done? Not yet
Automatic Rule Adaptation
- NP,8 (R0) ADJ(grande)
- feat1 -
- NP,8 (R1) ADJ(gran)
- feat1 c feat1
-
- Need to restrict application of general rule (R0)
to just post-nominal ADJ
un artista grande un artista gran un gran artista
un grande artista
82Add Blocking Constraint
Automatic Rule Adaptation
- NP,8 (R0) ADJ(grande)
- feat1 - feat1 -
- NP,8 (R1) ADJ(gran)
- feat1 c feat1
-
- Can we also eliminate incorrect translations
automatically?
un artista grande un artista gran un gran
artista un grande artista
83Making the grammar tighter
Automatic Rule Adaptation
- If Wc artista
- Add feat1 to N(artista)
- Add agreement constraint to NP,8 (R0) between N
and ADJ ((N feat1) (ADJ feat1))
un artista grande un artista gran un gran
artista un grande artista
back to main
84Example Requiring Minimal Pair
Automatic Rule Adaptation
Proposed Work
- 1. Run SL sentence through the transfer engine
- I see them ? veo los Correct TL los veo
- 2. Wi los but no Wi nor Wc
- Need a minimal pair to determine appropriate
refinement - I see cars ? veo autos
- 3. Triggering feature(s) ?(veo los, veo
autos) - ?(los,autos) pos
- PRON(los)pospron N(autos)posn
back to main
85Avenue Architecture
Elicitation
Rule Learning
Run-Time System
Rule Refinement
Morphology
Translation Correction Tool
Word-Aligned Parallel Corpus
INPUT TEXT
Run Time Transfer System
Rule Refinement Module
Elicitation Corpus
Decoder
Elicitation Tool
Lexical Resources
OUTPUT TEXT
back to main
86Technical Challenges
Automatic Evaluation of Refinement process
Elicit minimal MT information from non-expert
users
back to main
87Batch Mode Implementation
Automatic Rule Adaptation
Proposed Work
- Given a set of user corrections, apply refinement
module. - For Refinement Operations of errors that can be
refined fully automatically using - Correction information only
- 2. Correction and error information
error type, clue word
88Rule Refinement Operations
891. Correction info only
Rule Refinement Operations
It is a nice house Es una casa bonito
? Es una casa bonita
902. Correction and Error info
Rule Refinement Operations
PP ? PREP NP
I am proud of you Estoy orgullosa de tu
? Estoy orgullosa de ti
back to main
91Interactive Mode Implementation
Automatic Rule Adaptation
Proposed Work
- Extra error information is required to determine
triggering context automatically - ? Need to give other relevant sentences to the
user at run-time (minimal pairs) - For Refinement Operations of errors that can be
refined fully automatically but - 3. require a further user interaction
923. Further user interaction
Rule Refinement Operations
I see them Veo los ? Los veo
back to main
93Refining and Adding Constraints
Proposed Work
- VP,3 VP NP ? VP NP (veo los, veo autos)
- VP,3 VP NP ? NP VP NP pos c pron
- (los veo, autos veo)
- Percolate triggering features up to the
constituent level - NP PRON ? PRON NP pos PRON pos
- Block application of general rule (VP,3)
- VP,3 VP NP ? VP NP NP pos (NOT pron)
- veo los, veo autos (los veo, autos veo)
94User Studies
Proposed Work
- TCTool new MT classification (Eng2Spa)
- Different language pair
- Mapudungun or Quechua ? Spanish
- Batch vs Interactive mode
- Amount of information elicited
- just corrections vs error information
back to main
95Evaluation of Refined MT Output
- 1. Evaluate best translation ? Automatic
evaluation metrics (BLEU, NIST, METEOR) - 2. Evaluate translation candidate list size ?
precision (includes parsimony)
961. Evaluate Best translation
- Hypothesis file (translations to be evaluated
automatically) - Raw MT output
- Best sentence (picked by user to be correct or
requiring the least amount of correction) - Refined MT output
- Use METEOR score at sentence level to pick best
candidate from the list - ? Run all automatic metrics on the new hypothesis
file using user corrections as reference
translations.
972. Evaluate Translation Candidate List
- Precision tp binary 0,1 (1 user
correction) - tp fp total number of TLs
SL TL TL X TL X TL X TL X
SL TL X TL X TL X
SL TL TL X TL X TL X TL
SL TL TL X TL X
SL TL TL X
?
?
?
? user correction
?
?
?
1/3
1/2
0/3
1/5
1/5
back to main
98Generalization Power
- When triggering feature already exists in the
feature language (pos, gender, number, etc.) - I see them ? veo los ? los veo
- - I love him ? lo amo (before amo lo)
- - They called me yesterday ? me llamaron ayer
(before llamaron me ayer) - - Mary helps her with her homework
- ? Maria le ayuda con sus tareas
- (before Maria ayuda le con sus tareas)
back to main
99Precision, Recall and F1
- Precision tp
- tp fp (selected, incorrect)
- Recall tp
- tp fn (correct, not selected)
- F1 2 PR
- (P R)
back to main
100Automatic Evaluation Metrics
- BLEU averages the precision for unigram, bigram
and up to 4-grams and applies a length penalty
Papineni, 2001. - NIST instead of n-gram precision the information
gain from each n-gram is taken into account NIST
2002. - METEOR assigns most of the weight to recall,
instead of precision and uses stemming Lavie,
2004
back to main
101Data Set
Proposed Work
- Split development set (400 sentence) into
- Dev set ? Run User Studies
- Develop Refinement Module
- Validate functionality
- Test set ? Evaluate effect of Refinement
operations - Wild test set (from naturally occurring text)
- Requirement need to be fully parsed by grammar
back to questions
102Refine vs Bifurcate
- Batch mode ? bifurcate (no way to tell if the
original rule should never apply) - Interactive mode ? refine (change original rule)
if can get enough evidence that original rule
never applies. - Corrections involving agreement constraints seem
to hold for all cases ? refine (Open
research question)
back to questions
103More than one correction/sentence
- A B
- TL X X
- A
- 1st X
- B
- 2nd X
- Tetris approach
- to Automatic Rule Refinement
- Assumption different corrections to different
words ? different error
back to questions
104Exception structural divergences
- He danced her out of the room
- ? La bailó fuera de la habitación
- her he-danced out of the
room - ? La sacó de la habitación bailando
- her he-take-out of the room
dancing - Have no way of knowing that these corrections are
related - Do one error at a time, if TQ decreases over the
test set, hypothesize that its a divergence - Feed to the Rule Learner as a new (manually
corrected) training example
back to questions
105Constituent order change
- I gave him the tools
- ? di a él las herramientas
- I-gave to him the tools
- ? le di las herramientas a él
- him I-gave the tools to him
- desired refinement
- VP?VP PP(a PRON) NP VP?VP NP PP(a PRON)
- ? Can extract constituent information from MT
output (parse tree) and treat as one
error/correction
106More than one correction/error
- AB
- TL X
-
- Example edit and move same word
(like gran, bailó) - Occams razor
- Assumption both corrections are part of the
same error
back to questions
107Wc Example
- I am proud of you
- ? Estoy orgullosa de tu Wcde tu?ti
- I-am proud of you-nom
- ? Estoy orgullosa de ti
- I-am proud of you-oblic
- Without Wc information, would need to increase
the ambiguity of the grammar significantly! - you? ti I love you ? ti quiero (te
quiero,) - you read ? ti lees (tu lees,)
back to questions
108Lexical bifurcate
- Should the system copy all the features to the
new entry? - Good starting point
- Might want to copy just a subset of features
(possibly POS-dependent) - ? Open Research Question
back to questions
109Automatic Rule Adaptation
110Automatic Rule Adaptation
SL best TL picked by user
111Automatic Rule Adaptation
Changing word order
112Automatic Rule Adaptation
Changing grande into gran
113Automatic Rule Adaptation
back to main
114Automatic Rule Adaptation
1
2
3
115Input to RR module
Automatic Rule Adaptation
- User correction log file
- Transfer engine output ( parse tree)
sl I see them tl VEO LOS tree lt((S,0 (VP,3
(VP,1 (V,12 "VEO") ) (NP,0 (PRON,23
"LOS") ) ) ) )gt
sl I see cars tl VEO AUTOS tree lt((S,0 (VP,3
(VP,1 (V,12 "VEO") ) (NP,2 (N,13
AUTOS") ) ) ) )gt
back to main
116Types of RR Operations
Automatic Rule Adaptation
Completed Work
- Grammar
- R0 ? R0 R1 R0 constr CovR0 ?
CovR0,R1 - R0 ? R1R0 constr -
- ? R2R0 constrc CovR0 ?
CovR1,R2 - R0 ? R1 R0 constr CovR0 ? CovR1
- Lexicon
- Lex0 ? Lex0 Lex1Lex0 constr
- Lex0 ? Lex1Lex0 constr
- Lex0 ? Lex0 Lex1?Lex0 ? TLword
- ? ? Lex1 (adding lexical item)
bifurcate
refine
back to main
117Manual vs Learned Grammars
Automatic Rule Adaptation
- Manual inspection
- Automatic MT Evaluation
back to main
118Human Oracle experiment
Automatic Rule Adaptation
Completed Work
- As a feasibility experiment, compared raw output
with manually corrected MT - statistically significant (confidence interval
test) - These is an upper-bound on how much difference we
should expect any refinement approach to make.
back to main
119Invariable process?
- Rule Refinement process is not invariable ? Order
of the corrected sentences input to the system
matters - Example
- 1st gran artista ? bifurcate (2 rules)
- 2nd casa bonito ? add agr constraint to only 1
rule (original, general rule) - the specific rule is still incorrect (missing agr
constraint) - 1st casa bonito ? add agr constraint
- 2nd gran artista ? bifurcate
- ? both rules have agreement constraint (optimal
order)
back to questions
120User noise?
- Solution
- Have several users evaluate and correct the same
test set - ? threshold, 90 agreement
- - correction
- - error information (type, clue word)
- Only modify the grammar if enough evidence of
incorrect rule.
back to questions
121User Studies Map
Proposed Work
Batch mode
Only Corrections
Learned grammars
RR module
Correctionserror info
Eng2spa
X
X
Manual grammars
Mapu2Spa
X
interactive mode
Active learning
back to main
122Recycle corrections of Machine Translation output
back into the system by refining and expanding
existing translation rules
1231. Correction info only
Rule Refinement Operations
It is a nice house Es una casa bonito
? Es una casa bonita
John and Mary fell Juan y Maria ? cayeron
? Juan y Maria se cayeron
1241. Correction info only
Rule Refinement Operations
J y M cayeron ? J y M se cayeron
Es una casa bonito ? Es una casa bonita
Gaudi was a great artist Gaudi era un artista
grande ? Gaudi era un gran artista
I will help him fix the car Ayudaré a él a
arreglar el auto ? Le ayudare a
arreglar el auto
1251. Correction info only
Rule Refinement Operations
I would like to go Me gustaria que ir
? Me gustaria ? ir
I will help him fix the car Ayudaré a él a
arreglar el auto ? Le ayudare a
arreglar el auto
1262. Correction and Error info
Rule Refinement Operations
PP ? PREP NP
I am proud of you Estoy orgullosa tu
? Estoy orgullosa de ti
127Focus 3
Rule Refinement Operations
Wally plays the guitar Wally juega la
guitarra ? Wally toca la
guitarra
I saw the woman Vi ? la mujer ?
Vi a la mujer
I see them Veo los ? Los veo
128Outside Scope of Thesis
Rule Refinement Operations
John read the book A Juan leyó el libro
? ? Juan leyó el libro
Where are you from? Donde eres tu de?
? De donde eres tu?