Title: Conflict from Cell to Colony
1Conflict from Cell to Colony
Tom Wenseleers University of
Leuven, Belgium Ph.D. defence
May 22nd, 2001
2Major transitions in evolution
- Genes to Genomes
- Prokaryotes to Eukaryotes
- Unicellular to Multicellular Organisms
- Organisms to Societies
3But potential for conflict
- Cooperation seems obvious to explain when viewed
in terms of species-level benefits - But erroneous logic non-cooperative
free-riders outcompete altruists
- Conflicts may occur between organisms, but also
between cells or genes (intragenomic conflict)
4Conflicts in insect societies
In what ratio should males and females be
reared?
5Cytoplasmic sex-ratio distorters
- Conflict also occurs at the genomic level
maternally transmitted genes favour more female
biased sex-ratios than nuclear genes(intragenomi
c conflict) - Cytoplasmic genes such as mitochondria or some
bacterial symbionts may manipulate host to
produce female biased broods (cytoplasmic
sex-ratio distorters)
6Wolbachia
- Example of a maternally transmitted symbiont
- Alpha-proteobacterium
- Occurs mainly in arthropods (insectsCrustacea)
nematodes - Manipulates host reproduction to favour own spread
7Effects on host reproduction
- Male Killing
- Feminisation
- Parthenogenesis Induction
- Cytoplasmic Incompatibility
8Cytoplasmic incompatibility
Inviable
- Reduces fitness of Uninfected Female x Infected
Male Crosses - Gives an advantage to infected females
- Sterility in diploids, but production of males
only in haplo-diploids
NormalOffspringProduction
9Phylogeny
Other alpha proteobacteria
Gamma proteobacteria
Wolbachia
0.1
10Aims of my thesis
- Part I empirical
- Does Wolbachia occur in ant societies?
- Alternative explanation for female biased
sex-ratios in this group? - Part II theoretical
- What do animal and genomic conflicts have in
common? - Can sociobiological theory be applied to both?
11Integrated approach
12Part I. Wolbachia - a cause of intragenomic
conflict in ant colonies
13Work plan
- Does Wolbachia occur in ant societies and if so
in what frequency? - What effects does it have?Three case studies
- Parthenogenetic species
- Wood ant Formica truncorum
- Leptothorax nylanderi
- Host-parasite coevolution?
14Methodology PCR Assay
- Polymerase Chain Reaction using Specific Primers
- Targets ftsZ and wsp Wolbachia genes
- Positive, negative and nuclear DNA (18S rDNA)
controls - Negative samples retested twice
15High Incidence Worldwide
3451 samples
16Morphological evidence
- Present in trophocytes and oocytes
- Electron and light microscopical (DAPI) evidence
17Work plan
- Does Wolbachia occur in ant societies and if so
in what frequency? YES, IN HIGH FREQUENCY - What effects does it have?Three case studies
- Parthenogenetic species
- Wood ant Formica truncorum
- Leptothorax nylanderi
- Host-parasite coevolution?
18Work plan
- Does Wolbachia occur in ant societies and if so
in what frequency? YES, IN HIGH FREQUENCY - What effects does it have?Three case studies
- Parthenogenetic species
- Wood ant Formica truncorum
- Leptothorax nylanderi
- Host-parasite coevolution?
19Parthenogenesis induction?
Grasso et al. (2000) Ethology, Ecology
Evolution 12309-314 Wenseleers Billen (2000)
Journal of Evolutionary Biology 13277-280
20Wolbachia in F. truncorum
With Lotta Sundström University of Helsinki
21Formica truncorum
- Extensive variation in sex-ratio produced by
different colonies - Linked to facultative sex-ratio biasing
- Workers kill brothers in colonies headed by
singly mated queen - But not in colonies with double mated queen
- Does Wolbachia affect the sex-ratio too?
22Predictions
- Effect on the sex-ratio
- Males should be infected less than queens
- Sex-ratio should be correlated with infection
rates
- Incompatibility
- Males and queens should be infected equally
- Uninfected colonies should not be able to survive
23Formica truncorum
- Males (96) and queens (94) infected equally
- All colonies infected (total 33) despite
production of 6 uninfected queens by each colony - Consistent with an incompatibility effect
Uninfected queens do not survive past the
founding stage due to incompatible matings
Wenseleers, Sundström Billen (2002) Proceedings
of the Royal Society of London series B, in
press.
24Infection and sex-ratio
Wenseleers, Sundström Billen (2002) Proceedings
of the Royal Society of London series B, in
press.
25Infection and colony fitness
Wenseleers, Sundström Billen (2002) Proceedings
of the Royal Society of London series B, in
press.
26Infection rates
plt0.015
plt0.0001
N296
N158
N387
Wenseleers, Sundström Billen (2002) Proceedings
of the Royal Society of London series B, in
press.
27Conclusions
- No effects on the sex-ratio
- Probably causes incompatible matings
- Deleterious effects on colony function, but
partly mitigated by clearance of infection in
adult workers
28Leptothorax nylanderi
- Test experimentally whether Wolbachia causes
incompatible matings - Setup antibiotic treatment as an artificial
means of creating the uninfected queen x infected
male crossing type - Prediction male production (infertility)
following antibiotic treatment
29Antibiotics experiments
4 coloniesN70
7 coloniesN152
?2 10.51, p lt 0.001
30Work plan
- Does Wolbachia occur in ant societies and if so
in what frequency? YES, IN HIGH FREQUENCY - What effects does it have?Three case studies
- Parthenogenetic species
- Wood ant Formica truncorum
- Leptothorax nylanderi
- Host-parasite coevolution?
31Methodology Sequencing
28 sequencesAligned with previously sequenced
relatives
- Wolbachia surface protein wsp was sequenced
(approx. 550 bp) - Direct cycle sequencing when ants were infected
by single strain - Cloning and sequencing when ants were infected by
multiple strains (TA-cloning kit, pUC57 vector)
32High strain diversity
Solenopsis invicta (imported)
Coleomegilla maculata lengi
Doronomyrmex pacis A1
Myrmica sulcinodis (Pyrenees)
Plutella xylostella
Laodelphax striatellus
Diaphorina citri
Porcellionides pruinosus
Acraea encedon 1
Trichopria Tsp2
Myrmica rubra
Acromyrmex insinuator A
Formica lemani
Plagiolepis pygmaea
Sphaeroma rugicauda
Dryinid wasp sp
Trichogramma kaykai (LC110)
Bactocera cucurbitae
Muscidifurax uniraptor
Trichogramma bourarachae
Tribolium madens
Tribolium confusum
Rhinophoridae unid
Leptopilina heterotoma 2
Doronomyrmex kutteri B
Glossina morsitans centralis
Doronomyrmex pacis B2
Trichogramma spp.
Coleomegilla maculata
Adalia bipunctata B
Drosophila bifasciata
Nasonia vitripennis A
Aedes albopictus (Houston)
Drosophila simulans (Coffs Harbour)
Adalia bipunctata A
A
B
Acromyrmex octospinosus B3
Drosophila melanogaster (Cairns)
Drosophila melanogaster (CantonS)
Acromyrmex insinuator B1
Acromyrmex echinatior B
Drosophila simulans (Riverside)
Solenopsis invicta (native)
Acromyrmex echinatior A1
Acromyrmex octospinosus B1
Solenopsis richteri A
Acromyrmex octospinosus B2
Doronomyrmex pacis A2
Acromyrmex insinuator B2
Myrmica sabuleti
Solenopsis invicta A (native)
Telenomus nawai
Acromyrmex octospinosus A1
Encarsia formosa
Diplolepis rosae
Doronomyrmex goesswaldi A1
Leptopilina australis
Cadra cautella
Phlebotomus papatasi (Israel)
Gnamptogenys menadensis
Tetranychus urticae
Doronomyrmex pacis A3
Cadra cautella 2
Acraea encedon
Glossina austeni
Asobara tabida
Culex quinquefasciatus
Asobara tabida 3
Drosophila sechellia
Drosophila simulans (Hawaii)
Cataglyphis iberica
Culex pipiens (ESPRO)
Trichopria drosophilae
Isopods
Formica rufa
Teleutomyrmex schneideri
Bactocera sp 1 AscD
Aedes albopictus (Houston)
Myrmica sulcinodis (Russia)
Formica fusca (KH B)
Formica pratensis
Drosophila simulans (Watsonville)
Myrmica sulcinodis (Samso D)
Dacus destillatoria
Leptothorax acervorum
Formica fusca (SJW B)
Formica fusca (Mols D)
Formica truncorum
Doronomyrmex kutteri A
Doronomyrmex pacis A4
Formica polyctena
Neochrysocharis formosa
Doronomyrmex pacis B1
Doronomyrmex goesswaldi A2
33No match with host phylogeny
Solenopsis invicta (imported)
Coleomegilla maculata lengi
Doronomyrmex pacis A1
Myrmica sulcinodis (Pyrenees)
Plutella xylostella
Laodelphax striatellus
Diaphorina citri
Porcellionides pruinosus
Acraea encedon 1
Trichopria Tsp2
Myrmica rubra
Acromyrmex insinuator A
Formica lemani
Plagiolepis pygmaea
Sphaeroma rugicauda
Dryinid wasp sp
Trichogramma kaykai (LC110)
Bactocera cucurbitae
Muscidifurax uniraptor
Trichogramma bourarachae
Tribolium madens
Tribolium confusum
Rhinophoridae unid
Leptopilina heterotoma 2
Doronomyrmex kutteri B
Glossina morsitans centralis
Doronomyrmex pacis B2
Trichogramma spp.
Coleomegilla maculata
Adalia bipunctata B
Drosophila bifasciata
Nasonia vitripennis A
Aedes albopictus (Houston)
Drosophila simulans (Coffs Harbour)
Adalia bipunctata A
A
B
Acromyrmex octospinosus B3
Drosophila melanogaster (Cairns)
Drosophila melanogaster (CantonS)
Acromyrmex insinuator B1
Acromyrmex echinatior B
Drosophila simulans (Riverside)
Solenopsis invicta (native)
Acromyrmex echinatior A1
Acromyrmex octospinosus B1
Solenopsis richteri A
Acromyrmex octospinosus B2
Doronomyrmex pacis A2
Acromyrmex insinuator B2
Myrmica sabuleti
Solenopsis invicta A (native)
Telenomus nawai
Acromyrmex octospinosus A1
Encarsia formosa
Diplolepis rosae
Doronomyrmex goesswaldi A1
Leptopilina australis
Cadra cautella
Phlebotomus papatasi (Israel)
Gnamptogenys menadensis
Tetranychus urticae
Doronomyrmex pacis A3
Cadra cautella 2
Acraea encedon
Glossina austeni
Asobara tabida
Culex quinquefasciatus
Asobara tabida 3
Drosophila sechellia
Drosophila simulans (Hawaii)
Cataglyphis iberica
Culex pipiens (ESPRO)
Trichopria drosophilae
Isopods
Formica rufa
Teleutomyrmex schneideri
Bactocera sp 1 AscD
Aedes albopictus (Houston)
Myrmica sulcinodis (Russia)
Formica fusca (KH B)
Formica pratensis
Drosophila simulans (Watsonville)
Myrmica sulcinodis (Samso D)
Dacus destillatoria
Leptothorax acervorum
Formica fusca (SJW B)
Formica fusca (Mols D)
Formica truncorum
Doronomyrmex kutteri A
Doronomyrmex pacis A4
Formica polyctena
Neochrysocharis formosa
Doronomyrmex pacis B1
Doronomyrmex goesswaldi A2
34Multiple infections
Solenopsis invicta (imported)
Coleomegilla maculata lengi
Doronomyrmex pacis A1
Myrmica sulcinodis (Pyrenees)
Plutella xylostella
Laodelphax striatellus
Diaphorina citri
Porcellionides pruinosus
Acraea encedon 1
Trichopria Tsp2
Myrmica rubra
Acromyrmex insinuator A
Formica lemani
Plagiolepis pygmaea
Sphaeroma rugicauda
Dryinid wasp sp
Trichogramma kaykai (LC110)
Bactocera cucurbitae
Muscidifurax uniraptor
Trichogramma bourarachae
Tribolium madens
Tribolium confusum
Rhinophoridae unid
Leptopilina heterotoma 2
Doronomyrmex kutteri B
Glossina morsitans centralis
Doronomyrmex pacis B2
Trichogramma spp.
Coleomegilla maculata
Adalia bipunctata B
Drosophila bifasciata
Nasonia vitripennis A
Aedes albopictus (Houston)
Drosophila simulans (Coffs Harbour)
Adalia bipunctata A
A
B
Acromyrmex octospinosus B3
Drosophila melanogaster (Cairns)
Drosophila melanogaster (CantonS)
Acromyrmex insinuator B1
Acromyrmex echinatior B
Drosophila simulans (Riverside)
Solenopsis invicta (native)
Acromyrmex echinatior A1
Acromyrmex octospinosus B1
Solenopsis richteri A
Acromyrmex octospinosus B2
Doronomyrmex pacis A2
Acromyrmex insinuator B2
Myrmica sabuleti
Solenopsis invicta A (native)
Telenomus nawai
Acromyrmex octospinosus A1
Encarsia formosa
Diplolepis rosae
Doronomyrmex goesswaldi A1
Leptopilina australis
Cadra cautella
Phlebotomus papatasi (Israel)
Gnamptogenys menadensis
Tetranychus urticae
Doronomyrmex pacis A3
Cadra cautella 2
Acraea encedon
Glossina austeni
Asobara tabida
Culex quinquefasciatus
Asobara tabida 3
Drosophila sechellia
Drosophila simulans (Hawaii)
Cataglyphis iberica
Culex pipiens (ESPRO)
Trichopria drosophilae
Isopods
Formica rufa
Teleutomyrmex schneideri
Bactocera sp 1 AscD
Aedes albopictus (Houston)
Myrmica sulcinodis (Russia)
Formica fusca (KH B)
Formica pratensis
Drosophila simulans (Watsonville)
Myrmica sulcinodis (Samso D)
Dacus destillatoria
Leptothorax acervorum
Formica fusca (SJW B)
Formica fusca (Mols D)
Formica truncorum
Doronomyrmex kutteri A
Doronomyrmex pacis A4
Formica polyctena
Neochrysocharis formosa
Doronomyrmex pacis B1
Doronomyrmex goesswaldi A2
35No match with host phylogeny
36Work plan
- Does Wolbachia occur in ant societies and if so
in what frequency? YES, IN HIGH FREQUENCY - What effects does it have?Three case studies
- Parthenogenetic species
- Wood ant Formica truncorum
- Leptothorax nylanderi
- Host-parasite coevolution? NO, OCCASIONAL
HORIZONTAL TRANSMISSION
37Part II. Theoretical aspects ofconflict and
cooperation
With Francis Ratnieks and Kevin Foster
University of Sheffield
38Animal vs. intragenomic conflict
- What do animal and intragenomic conflict have in
common? - Is there a general theory of conflict that
provides insight into the evolution of conflict
at both levels?
39Theories of conflict
40Generalised Hamiltons rule
Wenseleers Ratnieks submitted
41Animal vs. intragenomic conflict
42Animal vs. intragenomic conflict
- Shows that game theoretic logic of conflict at
both levels is the same - But can genes also be related?
- Yes, kinship measures genetic correlation and for
2 genes at a locus this is the inbreeding
coefficient FIT - When genes are related they are selected to be
altruistic ! - Application of generalised Hamiltons rule allows
detailed analysis
43Spite Hamiltons unproven theory
- Medea killed her children to take away the smile
from her husbands face. - Example of a paradoxical behaviour that harms
another at no benefit to self (spite) - We showed that some forms of intragenomic
conflict qualify as spiteful behaviour
(Maternal effect lethals, queen killing in the
fire ant)
Foster, Ratnieks Wenseleers (2000) Trends in
Ecology Evolution 15469-470 Foster, Wenseleers
Ratnieks (2001) Annales Zoologici Fennici, in
press
44Why become a worker?
- Why do social insect females work for the benefit
of others? - Usual explanation indirect genetic benefit when
altruism is directed towards relatives (kin
selection) - But is relatedness in insect societies high
enough? - E.g. honey bee queen mates with several males so
that workers mostly rear half-sisters (r0.3)
45New calculations
- Female should become a queen with a probability
of (1-Rf)/(1Rm) (self determination) - 20 for stingless bees (singly mated)
- 56 for honey bees (polyandrous)
- Too high for the colony as a whole, since queens
are only needed for swarming (tragedy of the
commons) - Adult workers and mother queen selected to
prevent production of excess queens (policing)
46Comparative predictions hold
Individual Freedom Causes a Cost to Society
But females prefer to become queen with
probability of 56 !
Efficient Society but No Individual Freedom
47General conclusions
- Part I empirical
- Does Wolbachia occur in ant societies? YES, IN
HIGH FREQUENCY - Alternative explanation for female biased
sex-ratios in this group? PROBABLY NOT - Other effects? INCOMPATIBILITY (SPECIATION?)
- Part II theoretical
- What do animal and genomic conflicts have in
common? SAME LOGIC - Can sociobiological theory be applied to both?
YES (GENERALISED HAMILTOMS RULE) - What do we learn from this more generally?DEEPER
INSIGHT INTO THE FUNCTIONING OF HUMAN SOCIETIES
(TOC)
48The End
49Acknowledgements
Prof. Dr. J. Billen Prof. Dr. R. Huybrechts
Prof. Dr. J.J. Boomsma Dr. F. Ito Dr. K.R.
Foster Dr. F.L.W. Ratnieks Prof. S.A. Frank
Dr. L. Sundström Dr. D.A. Grasso Drs. S. Van
Borm Prof. Dr. F. Volckaert
Academy of Finland, British Council,
FWO-Vlaanderen,
Vlaamse Leergangen,
EU Network Social Evolution