Title: Imaging and Velocity Analysis with
1Imaging and Velocity Analysis with Stationary
Phase Migration
Jing Chen University of Utah
2Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
3Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
4Objective
- What are 2-D 3-D Horizontal
Resolution Limits of Migration Images? - What are Dynamic Ranges of 2-D 3-D Migration
Images?
5Assumptions
- Kirchhoff Migration
- A Point Scatterer Buried in a Homogeneous Media
- Far-Field Approximation
62-D Poststack Geometry
L
g
Z
Image Point
Point Scatterer
72-D Prestack Geometry
Image Point
Point Scatterer
83-D Poststack Geometry
93-D Prestack Fixed Geometry
103-D Prestack Moving Geometry
Receiver Matrix
Source Matrix
113-D Prestack Moving Geometry
Receiver Matrix
Source Matrix
12Definitions
Dynamic Range
Main Lobe
Side Lobe
Horizontal Resolution
132-D Poststack Migration
- 2-D Poststack Migration Operator
142-D Poststack Migration
15Definitions
Dynamic Range
Main Lobe
Side Lobe
Horizontal Resolution
162-D Poststack Migration
172-D Prestack Migration
182-D Prestack Migration
19Comparison of 2-D Migrations
Prestack
Poststack
203-D Poststack Migration
213-D Poststack Migration
223-D Prestack Migrationwith Fixed Geometry
233-D Prestack Migrationwith Fixed Geometry
243-D Migrations
Poststack
Prestack (Fixed Geometry)
253-D Prestack Migrationwith Moving Geometry
263-D Prestack Migrationwith Moving Geometry
273-D Prestack Moving Geometry
28Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
29Parameter Extraction
Extract specular-ray related parameters from
prestack migration
S
G
R
30Why Specular-Ray Parameters Needed ?
- Prestack Depth Migration
- Traveltime Inversion
- Tomographic MVA
- AVO
- Etc...
31Prestack Migration Operator
Image
Data
Aperture
Weight
32Stationary Phase Approximation
33Weighted Prestack Migration Operator
Image
Weight
Data
Aperture
Parameter
34Stationary Phase Approximation
35Specular-Ray Parameters
36Specular-Ray Parameters
Source
Receiver
Midpoint
Traveltime
Reflector Normal
Departure Angle
Emergence Angle
Incidence Angle
37Kirchhoff Migration of a COG
38Weighted Kirchhoff Migration of a COG
Extra Weight
39Division of Two COG Images
40COG Incidence Angles
Distance (km)
16
8
0
0
20
(Degrees)
Depth (km)
10
2
4
0
41COG Incidence Angles
Distance (km)
16
8
0
0
20
(Degrees)
Depth (km)
10
2
4
0
After Median Filtering
42COG Traveltimes
Distance (km)
16
8
0
3.5
0
(Seconds)
Depth (km)
1.75
2
4
0
43COG Traveltimes
Distance (km)
16
8
0
3.5
0
(Seconds)
Depth (km)
1.75
2
4
0
After Median Filtering
44COG S-R Midpoint Coordinates
Distance (km)
16
8
0
20
0
Depth (km)
(km)
10
2
4
0
45COG S-R Midpoint Coordinates
Distance (km)
16
8
0
20
0
Depth (km)
(km)
10
2
4
0
After Median Filtering
46Verification of Extracted Parameters
47COG S-R Midpoint Coordinates
Distance (km)
16
8
0
20
0
Depth (km)
(km)
10
2
4
0
48COG Traveltimes
Distance (km)
16
8
0
3.5
0
(Seconds)
Depth (km)
1.75
2
4
0
49Verification of Extracted Parameters
Trace Midpoint Coordinates
15
13
11
1
Time (sec)
Trvaeltimes Extracted
2
50Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
51Stationary Phase Migration
SPM uses specular-ray parameters to
- Migrate traces within Fresnel zone
- Reject traces out of Fresnel zone
- Suppress alias artifacts
52Stationary Phase Migration
- Algorithm
- Synthetic Data Example
- Field Data Example
53Stationary Phase Migration Operator
Schleicher et al. (1997)
Fresnel zone width
Minimum Aperture
Fresnel Zone
Stationary phase point
54Stationary Phase Migration
- Algorithm
- Synthetic Data Example
- Field Data Example
55Kirchhoff Migration of a COG
Distance (km)
16
8
0
4
12
0
1
Depth (km)
2
3
4
56Stationary Phase Mig. of a COG
Distance (km)
16
8
0
4
12
0
1
2
Depth (km)
3
4
57Migration Operator
Trace Contributions
58Kirchhoff Migration of a COG
Distance (km)
16
8
0
4
12
0
1
Depth (km)
2
3
4
59Trace Contributions KM
Trace Number
300
150
0
0
Depth (km)
2
4
60Trace Contributions SPM
Trace Number
300
150
0
0
Depth (km)
2
4
61Kirchhoff Migration of a COG
Distance (km)
16
8
0
4
12
0
1
Depth (km)
2
3
4
62Trace Contributions KM
Trace Number
300
150
0
0
Depth (km)
2
4
63Trace Contributions SPM
Trace Number
300
150
0
0
Depth (km)
2
4
64Kirchhoff Migration of a COG
Distance (km)
16
8
0
4
12
0
1
Depth (km)
2
3
4
65Trace Contributions KM
Trace Number
300
150
0
0
Depth (km)
2
4
66Trace Contributions SPM
Trace Number
300
150
0
0
Depth (km)
2
4
67Incidence Angle
CIG
Offset (km)
Offset (km)
0
3
3
0
70
0
0
Depth (km)
Depth (km)
35
2
2
4
0
4
(Deg)
68Incidence Angle
CIG
Offset (km)
Offset (km)
0
3
3
0
70
0
0
Depth (km)
Depth (km)
35
2
2
4
0
4
(Deg)
69Stacked SPM Image After Muting
Distance (km)
16
8
0
4
12
0
1
2
Depth (km)
3
4
70Stacked SPM Image Without Muting
Distance (km)
16
8
0
4
12
0
1
2
Depth (km)
3
4
71Stationary Phase Migration
- Algorithm
- Synthetic Data Example
- Field Data Example
72Kirchhoff Migration of a COG
Distance (km)
14
6
0
2
12
4
8
10
0
2
Depth (km)
4
6
73Stationary Phase Mig. of a COG
Distance (km)
14
6
0
2
12
4
8
10
0
2
Depth (km)
4
6
74Stacked KM Image
Distance (km)
14
6
0
2
12
4
8
10
0
2
Depth (km)
4
6
75Stacked SPM Image
Distance (km)
14
6
0
2
12
4
8
10
0
2
Depth (km)
4
6
76Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
77Steps in Tomographic MVA
- Build Initial Migration Velocity
- Migrate Seismic Data
- Obtain S R Coordinates with SPM
- Find Specular-Ray Paths
- Pick Depth Residual Moveouts
- Pick Reflector Positions
- Update Velocities
- Migrate Seismic Data With
- Updated Velocities
- Repeat Above Steps
78Preparing Input For Velocity Update
Seismic Data
Initial Migration Velocities
Stationary-Phase Migration
CIGs
Source Xs(Xi,h)
Receiver Xr(Xi,h)
ZO Image
Auto Scan
Residual Moveouts DZ(Xi,h)
Reflector Positions Xi
Xi DZ(Xi,h) Xs(Xi,0) Xr(Xi,0) Xs(Xi,h) Xr(Xi,h)
79Velocity Updating Scheme
Xi DZ(Xi,h) Xs(Xi,0) Xr(Xi,0) Xs(Xi,h) Xr(Xi,h)
Initial Mig. Velocity
DZ --gt DT
2 Pt. Ray Tracing
Adjust Reflector Depths
Back Projection SIRT DT --gt DS
New DZ
Reflector Adjustment Iteration
New Slowness SSDS
SIRT Iteration
DZ --gt DT
New DT
Yes
Misfit Func. Decrease?
Yes
No
Misfit Func. Decrease?
No
STOP
80Initial Migration Velocity
Distance (km)
15
10
0
5
10000
0
1
Depth (km)
7450
2
3
4900
(ft/sec)
81Image With Initial Velocity
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
82Peak-Amplitude Positions
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
83Reflectors Picked
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
84Reflectors Picked
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
85Depth Residuals Picked
Depth Residual Moveouts (m)
Horizontal Coordinates Along Reflector (km)
86Depth Residuals Picked
After Median Filtering and Muting
Depth Residual Moveouts (m)
Horizontal Coordinates Along Reflector (km)
87Raypaths
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
88Raypaths
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
89Misfit Function vs Iteration No.
Reflector Adjustment Iterations
Misfit Function
SIRT Iterations
Iteration Number
90Velocity Increment
Distance (km)
15
10
0
5
150
0
1
Depth (km)
50
2
3
-50
(ft/sec)
91Image With Updated Velocity
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
92Image With Initial Velocity
Distance (km)
15
10
0
5
0.3
1.0
Depth (km)
2.0
93Common Image Gathers
With Initial Velocity
0.5
1.2
Depth (km)
2.0
94Common Image Gathers
With Updated Velocity
0.5
1.2
Depth (km)
2.0
95Outline
- Resolution Analysis
- Specular Ray Parameters
- Stationary Phase Migration
- Tomographic Velocity Analysis
- Conclusions
96Conclusions
- Horizon resolutions are proportional to
wavelength, scatterer depth and inversely
proportional to aperture size - 2-D prestack migration has the same resolution
as the 2-D poststack migration, but higher
dynamic range.
97Conclusions
- 3-D fixed geometry prestack migration has lower
resolution than 3-D postatck migration, but 3-D
moving geometry presatck migration has the same
resolution as 3-D poststack migration. Both 3-D
prestack migrations have higher dynamic ranges
than 3-D poststack migration.
98Conclusions
- Specular-ray related parameters can be
estimated from presatck migration - SPM produces fewer alias artifacts and improves
horizon continuity - Automatic tomographic velocity analysis is able
to obtain better migration velocity
99Acknowledgements
- I thank the committee members for supervising
my studies and researches in the past years. - I thank Fuhao Qin and J.C. Wan of Hess for
supervising my summer works in Hess. - I thank the UTAM sponsors for their supports.
- I thank UTAM members for their helps.