Title: Liquid crystal elastomers
1Liquid crystal elastomers
Liquid Crystal elastomer
Normal isotropic elastomer
2Monodomain and polydomain samples
Aligned
few microns
Unaligned Polydomain
3Mechanical anisotropy
Anisotropy in monodomain
(All samples synthesised by Dr Ali Tajbakhsh)
(soft elasticity)
D
tan d
35º
V
50º
(like isotropic rubber)
70º
80º
Frequency (s-1)
4Mechanical anisotropy
Master curve constructed using time-Temperature
superposition. (Scaled to 35º)
1.8
1.6
1.4
1.2
tan d
1.0
0.8
0.6
0.4
0.2
-1
0
1
2
10
10
10
10
Frequency (s-1)
5Mechanical anisotropy
Polydomain compared with monodomain
tan d
Frequency (s-1)
6Stretched Polydomain
- Stretching a polydomain material and clamping it
during dynamic mechanical analysis shows same
behaviour as monodomain.
7Mechanical anisotropy
Stretched Polydomain
tan d
8Time-resolved experimentsWAXS
2-D intensified CCD detector
X-rays
Stretch
Oscillatory shear
..and then shear
COMPUTER
Optical chopper
9Azimuthal integration
Fit to I a b exp(-c (cos(f-d))2). d
shows azimuthal tilt
10Variation in tilt angle
We can successfully obtain WAXS data at 1s
time-resolution without loss of image quality by
binning over many cycles.
0.5 mm
Strain movement of arm
0
84
83.5
83
-0.5 mm
82.5
82
81.5
Tilt angle / degrees
81
80s
80.5
10s
40s
80
79.5
79
0
50
100
150
200
250
300
350
Time (degrees of shear cycle)
11Time-resolved Optical experiments
Amplified photodiode
Red diode laser
Oscillatory stretch
COMPUTER
Optical chopper
12Amplitude and phase shift
Amplitude / Arbitrary units
0
70º
60º
55º
50º
40º
Phase shift (cycles)
1
0.1
0.01
1
0.1
0.01
0
1
0.1
0.01
0.1
0.01
Frequency / s-1
- High temperatures amplitude independent of
frequency phase shift increases - Medium temperatures amplitude decreases with
frequency phase shift shows hump - Low temperatures amplitude independent of
frequency phase shift decreases
13Model (assume linear)
- Two processes causing changes in transparency on
stretching. - One fast (affine deformation? Thinning?)
- One slow (disappearance of domain boundaries?)
- Both equilibrium transparency linear with strain
(for small amplitude)
14Derivation of model
- (small) sinusoidal imposed strain
- gives sinusoidal light transmission
15Amplitude data qualitative fit
BUCKLING
Amplitude / Arbitrary units
0
f / s-1
1
0.1
0.01
70º
60º
55º
50º
40º
- High temperatures amplitude independent of
frequency - Medium temperatures amplitude decreases with
frequency - Low temperatures amplitude independent of
frequency
k 10
k 1
k 0.1
k 0.01
k 1e-3
1e-4
10
16Phase shift data quantitative fit
c1 2.16
70º k 6.55 s-1
Data give good fit to model, with
temperature-dependent rate constant
60º k 2.62 s-1
55º k 0.75 s-1
Phase shift (cycles) d / 2 p
50º k 0.26 s-1
0.03
0.02
40º k 0.022 s-1
0.01
Data consistent with Activation energy EA 200
kJ mol-1 (assume Arrhenius equation)
0.00
w / s-1
0.01
0.1
10
17Phase shift t-T superposition?
Scaled to 50º
w / s-1
18Fitting our data
- Assume t-T superposition, scaled for 50 degrees
offset
At 50º C k 0.26 s-1
c1 17.4
w / s-1
19Step-strain
Fits first-order mono-exponential I I0 - A
exp(-k t) k increases with temperature
50º C k 0.17 s-1
40º C k 0.034 s-1
60º C k 4.9 s-1
10s
5s
1s
3s
100s
200s
2s
20Comparison of first-order rate constants
- The sinusoidal and step data agree (within error)
- Activation energy 200 kJ mol-1 . (What does this
mean?)
1 / T (K-1)
ln (k / s-1)