Intense Laser Interactions with Trapped Molecular Ions - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Intense Laser Interactions with Trapped Molecular Ions

Description:

Intense Laser Interactions with Trapped Molecular Ions. Jason Greenwood. Dissociation of H2 in an Intense Laser Field ... Intense Field Dressed States ... – PowerPoint PPT presentation

Number of Views:52
Avg rating:3.0/5.0
Slides: 33
Provided by: jgree2
Category:

less

Transcript and Presenter's Notes

Title: Intense Laser Interactions with Trapped Molecular Ions


1
Intense Laser Interactions with Trapped Molecular
Ions
  • Jason Greenwood

2
Outline
  • Dissociation of H2 in an Intense Laser Field
  • Electrostatic Ion Cavity
  • Stability and loss
  • Preliminary results of D2, HD dissociation
  • Manipulating trapped ions
  • Planned Experiments
  • ASTRA laser
  • Future

3
Photon Induced Dissociation of H2
  • TiSapphire laser pulse
  • 800 nm
  • 1.55 eV
  • 2.5 fs period
  • Two states
  • 1s?g (ground)
  • 2p?u
  • H2(?9) 1? (800nm) ? H H 0.77eV

www.mpq.mpg.de/haensch/h2/introduction.htm
4
Intense Field Dressed States
  • System represented by superposition of states
    dressed by large number of photons, separated by
    1?
  • Diabatic Curves

5
Avoided Crossings
  • Coupling between statesproduces avoided crossing
  • Coupling E field dependent
  • Vibrational period ? 15 fs
  • Adiabatic dressed states
  • long pulses ? gtgt 15 fs
  • avoided crossing at 1? or 3?

6
H2 Dissociation
  • Field induces electric dipolealong internuclear
    axis
  • Bond Softening
  • nett 1 photon absorptionfor ? ? 5
  • nett 2 photon absorptionfor ?? 4

7
Experimental Studies
  • Neutral Target
  • H2 laser ? H H non-sequential ionization
  • ? H2(?) laser ? H H0 dissociation
    ? H H ionization (SI, EI)
  • Ion Target
  • H2 e? ? H2(?) laser ? H H0
    dissociation ? H H ionization (SI,
    EI)
  • Advantages of ion target
  • first ionization process unrelated to laser
    interaction
  • fast products, hence H0 detectable (pure
    dissociation)

8
H2 Vibrational Distibutions
e- impact
3 x 1013 W cm-2
  • Posthumus et al., PRL, 92, 163004 (2004)

4.8 x 1013 W cm-2
1.5 x 1014 W cm-2
9
Theory vs Experiment
  • Comparison difficult due to strong dependence on
  • Vibrational population
  • Intensity (varies spatially, temporally)
  • Experimental energy resolution

1? vib. release (dashed)
2? vib. release (dotted)
Numerical solution of time dependent Schrödinger
equation for 2 state model for H2 with
Franck-Condon vibrational population.
L-Y Peng et al. J. Phys. B 38, 1727 (2005)
10
H neutrals from H2 50fs pulses Ian
Williams(QUB), Roy Newell(UCL) et al.
11
Transition to Ultra-short Pulses
  • ? ? 15 fs inclusion of quantum nuclear motion
    important
  • Dramatic change from adiabatic dissociation (long
    pulse) to frozen nuclei (short pulse)
  • To verify theoretical predictions experiment
    needs well defined vibrational states!

H2 (? 0) Dissociation
5 fs
10 fs
20 fs
L-Y Peng et al. J. Phys. B 38, 1727 (2005)
12
Why Trap Ions?
  • Extended period for ion manipulation
  • Internal pumping, de-excitation
  • External manipulation of ion phase space
  • Extended period of measurement
  • Metrology, mass spectrometry
  • Lifetime measurements

13
Linear Electrostatic Trap (Ion Cavity)
  • Ion Cavity (Dahan et al., Rev. Sci. Instrum., 69,
    76 (1997)
  • For ions, refractive index ? V1/2
  • Symmetric Laser cavity stable when

R 2f
L
14
QUB Trap
  • 2 planar mirrors, 2 lenses
  • Trapped filled by pulsing entrance mirror
  • Features
  • Electrostatic, trapping mass independent
  • keV ions stored, fast neutrals detected
  • ToF measurements possible due to linear motion of
    ions

15
Potential Energy Surface
16
Ion Loss Mechanisms
  • Population of Unstable Trajectories
  • most ions lost by 1 ms
  • Neutralisation in background gas
  • X A ? X0 A
  • X? A ? X0 A e-
  • cross section can vary for excited states giving
    multi-component decay
  • Elastic scattering in background gas
  • Ion lost if scattered outside region of stable
    phase space
  • May undergo multiple collisions
  • Ion-ion scattering
  • Density dependent
  • Most significant at early trapping times
  • External Perturbations
  • Ions pushed outside stable phase space

17
H2
18
(No Transcript)
19
Dissociation Analysis by ToF
  • Detect neutral D fragments
  • 2 ToF peaks

20
Laser Intensity lt 1011 Wcm-2
21
Producing HD (? 0)
  • Passive Cooling
  • use HD with dipole moment
  • ? 1 to ? 0 lifetime 80 ms
  • gt 95 ? 0 after 300 ms

Vibrational decay of HD from initial
Franck-Condon distribution
22
(No Transcript)
23
(No Transcript)
24
Ion Velocity Cooling
  • Routinely performed at MeV, GeV energies
  • Not directly demonstrated at keV energies
  • Results in improved ToF resolution

25
V
V
V
t
?E
??E
V
V
26
Manipulation of Ion Phase Space
27
Ion Cooling
Al? Si?
28
(No Transcript)
29
(No Transcript)
30
Summary of Progress
  • Positive and negative ions trapped for seconds
  • Molecular dissociation energy release measured
    for different trapping times
  • Ion cooling / bunch stabilisation demonstrated
  • Energy spread reduced from 16 eV to 8 eV

31
Potential Applications
  • High resolution ToF studies of internally and
    externally cold molecular ions, e.g. HD, CH,
    CO
  • ASTRA Run June,July 2006
  • HD (? 0) passive cooling 300 ms
  • Dissociation using 30 fs and 10 fs pulses
  • Future ASTRA work with CEP stabilised ultrashort
    pulses. Control of
  • HD (? 0) ? H D
  • HD (? 0) ? H D
  • Potential for studies of biomolecular
    fragmentation

32
Acknowledgements
  • CCLRC, EPSRC
  • EU Framework 6 Integrated Infrastructure
    Initiative
  • Ion trapping
  • Higher Education Authority (Rep. of Ireland)
  • Plasma and Ion Beam Network (Dublin City
    University/QUB)

Ian Williams Jarlath McKenna Jofre
Pedregosa-Gutierrez Philip Orr John
Alexander Wesley Walter (Denison University, Ohio)
Write a Comment
User Comments (0)
About PowerShow.com