Project list - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Project list

Description:

Peptide MHC binding predictions using artificial neural networks with different ... Gibbs sampler approach to the prediction of MHC class II binding motifs ... – PowerPoint PPT presentation

Number of Views:36
Avg rating:3.0/5.0
Slides: 13
Provided by: joha96
Category:
Tags: algo | list | project

less

Transcript and Presenter's Notes

Title: Project list


1
Project list
  • Peptide MHC binding predictions using position
    specific scoring matrices including pseudo counts
    and sequences weighting techniques
  • Peptide MHC binding predictions using artificial
    neural networks with different sequence encoding
    schemes
  • Gibbs sampler approach to the prediction of MHC
    class II binding motifs
  • Improved protein sequence alignment using
    sequence profiles
  • Improved sequence alignments using position
    specific gap penalties
  • Improved protein template identification using
    hidden Markov models (HMMER)
  • Chemo-informatics using Support Vector Machines
  • Model of HIV infection using Cellular Automata

2
What is a Project
  • Purpose
  • Use a method introduced in the course to describe
    some biological problem
  • How
  • Construct a data set describing the problem
  • Define which method to use
  • (Develop method)
  • Train and evaluate method
  • (Compare performance to other methods)
  • Documentation
  • Write report in form of a research article (10-15
    pages)
  • Abstract
  • Introduction
  • Materials and method
  • Results
  • Discussion
  • References

3
PSSM
  • Peptide MHC binding predictions using position
    specific scoring matrices including pseudo counts
    and sequences weighting techniques
  • Compare methods for sequence weighting
  • Clustering vs heuristics
  • Benchmark (Peters et al 2006) covering some 20
    MHC molecules, compare to best other methods

4
NN
  • Peptide MHC binding predictions using artificial
    neural networks with different sequence encoding
    schemes
  • Benchmark (Peters et al 2006) covering some 20
    MHC molecules, compare to best other methods
  • Compare sequence encoding schemes
  • Sparse, Blosum, composition, charge, amino acids
    size,..

5
Gibbs sampler
  • Gibbs sampler approach to the prediction of MHC
    class II binding motifs
  • Develop Gibbs sampler to prediction of MHC class
    II binding motifs
  • Benchmark Nielsen et al 2007 covering 14 HLA-DR
    alleles

6
Sequence alignment - 1
  • Improved protein sequence alignment using
    sequence profiles
  • Develop sequence profile alignment scoring scheme
    to improve sequence alignment

7
Sequence alignment - 1
  • Improved protein sequence alignment using
    sequence profiles
  • Benchmark (Andrej Sali. Protein Science (2004)
  • SEQ1 SEQ2 ID RMSD
  • 1QFE.A 1RLC.L 4.38 3.79
  • 1BAR.A 1XYF.A 4.84 1.84
  • 1F6Y.A 1REQ.A 6.20 3.81
  • 1DTY.A 1B9H.A 8.17 3.38
  • 1DTY.A 1B9H.A
  • BL 1DTY.A 429 1B9H.A 388 368 84 16.6155 2
  • PROF 1DTY.A 429 1B9H.A 388 429 47 6.5659 173
  • Use f4 n4/qlen to evaluate methods

Qlen
Dlen
Alen
Nid
Rmsd
n4
8
Sequence alignment - 1
  • Improved protein sequence alignment using
    sequence profiles
  • Code example
  • prf_align 2PUE.A 1BYK.A xC
  • ALN 2PUE.A 340 0 1BYK.A 255 0 type prol_list alen
    269 249 -99 57 20 score 168 2246 -168 -99.900002
    rmsd -99.9 -99 -99 -99 -99 -99.9
  • QAL 2PUE.A 58 KSIGLLATSSEAAYFAEIIEAVEKNCFQKGYTL
    ILGNAWNNLEKQRAYLSMMAQKRVDGLLVM-CSEYPEPLLAM
  • LEEYRHIPMVVMDWGEAKADFTDAVIDNAFEGGY-MAGRYLIERGHREIG
    VIPGPLEQ-NTGAGRLAGFMKAMEEAMIKVPESWIVQGDFEP
  • ESGYRAMQQILSQPHRPTAVFCGGDIMAMGALCAADEMGLRVPQDVSLIG
    YDNVRNARYFTPALTTIHQPKDSLGETAFNMLLDRIVNKREE
  • PQSIEVHPRL
  • DAL 1BYK.A 2 KVVAIIVTRLDSLSENLAVQTMLPAFYEQGYDP
    IMMESQFSPQLVAEHLGVLKRRNIDGVVLFGFTGITEEMLAH
  • WQSS-----LVLLARDAKG-FASVCYDD--EGAIKILMQRLYDQGHRNIS
    YLGVPHSDVTTGKRRHEAYL-AFCKAH-KLHPVAALPG-LAM
  • KQGYENVAKVIT-PET-TALLCATDTLALGASKYLQEQRIDTLQLAS-VG
    --NTPLMKFLHPEIVTVDPGYAEAGRQAACQLIAQVTG-RSE
  • PQQIIIPATL
  • prf_align 2PUE.A 1BYK.A xC aln2rmsd -- xC
    grep ALN
  • ALN 2PUE.A 340 0 1BYK.A 255 0 type prol_list alen
    269 249 249 57 20 score 168 2246 -168 -99.900002
    rmsd 3.21852 113 101 173 198 0.203965

9
Sequence alignment - 2
  • Improved protein sequence alignment using using
    position specific gap penalties
  • Develop scheme for position specific gap
    penalties to improve sequence alignment
  • Gap penalties in the core of a protein should be
    higher than gap penalties in loops

10
Hidden Markov models
  • Improved protein template identification using
    hidden Markov models (HMMER)
  • Train profile HMM to remote protein fold
    recognition
  • Use the Hmmer program to construct profile HMM
    for selected set of proteins from the CASP8
    competition
  • Use Hmmer model to identify PDB templates for
    hmology modeling for CASP8 targets

11
Support vector machines
  • Chemo-informatics using Support Vector Machines
  • Peptide binding using SVMs
  • Compare to PSSM/NN using benchmark (Peters et al
    2006) covering some 20 MHC molecules

12
Cellular Automata
  • Develop model for HIV infection using cellular
    automata
Write a Comment
User Comments (0)
About PowerShow.com