Title: High pT Results from the BRAHMS Experiment
1High pT Results from the BRAHMS Experiment
Zhongbao Yin Department of Physics, University
of Bergen for the BRAHMS Collaboration
2The BRAHMS Experiment (II)
Run III
3Acceptance
4Why high pT physics is so interesting
- PQCD is applicable
- Probe and characterize the high energy density
medium - Disentangle different nuclear medium effects
5Experimental Measurements
- Invariant spectra of high pT particles
- Centrality dependence of high pT particle yields
- To compare with pp spectra, introduce the
nuclear modification factor -
6Event Selection
- Match up TPC and DC tracks in
- the magnets
- Point back to IP
- BB ZDC vertex
Centrality classes based on multiplicity
7Invariant Spectra of Charged Hadrons
Accepted for publication in PRL (nucl-ex/0307003)
8Nuclear Modification Factors
9Ratio of Rcp at h 2.2 and 0
-
- The degree of high pT suppression observed
at h 2.2 is similar to or larger than at
midrapidity - How is this understood?
10Reminder
11dAu vs. Central AuAu Collisions
- High pT enhancement observed in dAu collisions
at ?sNN200 GeV
12Particle Identification at Forward Rapidity
- H2 (TOF) for low momentum
- 2.5 sigma cuts
- K/p separation up to 3.8 GeV/c
- RICH for higher momentum
- 3 sigma cuts
- K/p separation up to 18 GeV/c
13Invariant Spectra for p- at y2.2
14Rcp at y2.2 for Negative Pion
15Another Reminder (QM'02)
16Summary
- AuAu at ?sNN 200 GeV
- ? Strong high pT suppression in central
collisions observed both at midrapidity and at
forward rapidity - ? Suppression not observed in semi-peripheral
- collisions (40-60)
- A similar high pT suppression is seen for the
identified negative pion spectra as found for the
total negative charged hadron spectra
(independent analysis) - More work and more statistics needed in order to
get the particle composition at high pT - dAu at 200 GeV
- Enhancement of high pT yields observed at
midrapidity. We will also investigate high pT
yields at forward rapidity
17The BRAHMS Collaboration
I. Arsene10, I. G. Bearden7, D. Beavis1, C.
Besliu10, B. Budick6, H. Bøggild7, C. Chasman1,
C. H. Christensen7, P. Christiansen7, J. Cibor4,
R. Debbe1, E. Enger12, J. J. Gaardhøje7, M.
Germinario7, K. Grotowski4, K. Hagel8, O.
Hansen7, H. Ito1, 11, A. Jipa10, F. Jundt2, J. I.
Jørdre9, C. E. Jørgensen7, R. Karabowicz3, E. J.
Kim5, T. Kozik3, T. M. Larsen12, J. H. Lee1, Y.
K. Lee5, S. Lindal12, R. Lystad9, G. Løvhøiden2,
Z. Majka3, A. Makeev8, B. McBreen1, M.
Mikelsen12, M. Murray8, 11, J. Natowitz8, B.
Neumann11, B. S. Nielsen7, J. S. Norris11, D.
Ouerdane7, R. Planeta4, F. Rami2, C. Ristea10, O.
Ristea10, D. Röhrich9, B. H. Samset12, D.
Sandberg7, S. J. Sanders11, R. A. Scheetz1, P.
Staszel7, T. S. Tveter12, F. Videbæk1, R. Wada8,
Z. Yin9, I. S. Zgura10 1Brookhaven National
Laboratory, USA, 2IReS and Université Louis
Pasteur, Strasbourg, France 3Jagiellonian
University, Krakow, Poland, 4Institute of
Nuclear Physics, Cracow, Poland 5Johns Hopkins
University, Baltimore, USA, 6New York
University, USA 7Niels Bohr Institute, University
of Copenhagen, Denmark 8Texas AM University,
College Station, USA, 9University of Bergen,
Norway 10University of Bucharest, Romania,
11University of Kansas, Lawrence,USA 12
University of Oslo Norway