Part One: Stellar Evolution - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

Part One: Stellar Evolution

Description:

Definition: Hydrostatic equilibrium is the condition of force balance throughout ... Other forces may effect equilibrium: centrifugal, magnetic, exterior ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 34
Provided by: brianp58
Category:

less

Transcript and Presenter's Notes

Title: Part One: Stellar Evolution


1
Part One Stellar Evolution
  • II. The Stellar Structure Equations
  • A. Hydrostatic Equilibrium
  • Definition Hydrostatic equilibrium is the
    condition of force balance throughout a star.
  • Simplest case Gravity force vs. Gas Pressure
    force.
  • Other forces may effect equilibrium
    centrifugal, magnetic, exterior pressure, other
    pressures

2
Part One Stellar Evolution
  • Spherically symmetric, uniform density star
  • No exterior pressure
  • Variables depend only on r.
  • Consider a mass element dm with V Adr pictured
    below

F P,top
A
  • NII on mass element
  • dm(d2r/dt2) FG FP,T FP,B. (II.A.1)

dm, r
dr
A
M(r) mass interior to radius r.
F P,bottom
3
Part One Stellar Evolution
  • Spherically symmetric, uniform density star
  • Mass of volume element
  • dm d(rV) d(rAr) rAdr. (A.2)
  • So Eqn A.1 becomes
  • rAdr(d2r/dt2) -G(rAdr)M(r)/r2d(FP). (A.3)

4
Part One Stellar Evolution
  • Spherically symmetric, uniform density star
  • f) The force due to pressure is PA, so
  • d(FP) d(PA) AdP A(Ptop - Pbottom).
  • Combining A.1- 3 gives
  • rAdr(d2r/dt2) G(rAdr)M(r)/r2AdP, or
  • d2r/dt2 GM(r)/r2 (1/r)dP/dr. (A.4)
  • Eqn A.4 is the Equation of Motion for dm.

5
Part One Stellar Evolution
  • Spherically symmetric, uniform density star
  • g) For HE, acceleration is zero, and so
  • dP/dr -GrM(r)/r2. (A.5)

HE (A.5) is a statement about the pressure
gradient inside a star with a given mass
distribution.
6
Part One Stellar Evolution
  • Example Find P(r) for a uniform density star
    with M(r) Cr2.
  • dP/dr -GrM(r)/r2
  • ?dP -?Gr(Cr2)/r2 dr. Note integral from
    r 0 to r.
  • P(r) - P(0) -GrC?dr -GrCr.
  • Thus, P(r ) Pcentral -GrCr.

7
Part One Stellar Evolution
  • Example Find P(r) for a uniform density star
    with M(r) Cr2.
  • P(r) Pcentral -GrCr.
  • Checks
  • Units! What are the units for C?
  • Cr2 g, so C g/cm2.
  • What are the units of GrCr?
  • GrCr (dyne-cm2/g2)(g/cm3)(g/cm2)(cm)
  • dyne/cm2 units of pressure.

8
Part One Stellar Evolution
  • Example Find P(r) for a uniform density star
    with M(r) Cr2.
  • P(r) Pcentral -GrCr.
  • Solve for the central pressure Integrate from
    0 to R.
  • P(R) - P(0) -GrC?dr -GrCR.
  • Note for an isolated star, P(R) 0
  • P(0) Pcentral GrCR.

9
Part One Stellar Evolution
  • II. The Stellar Structure Equations
  • B. Mass Continuity
  • Definition Expression for enclosed mass as a
    function of position in the star.
  • Spherical star
  • dM(r) dMr 4pr(r)r2dr. (II.B.1)

10
Part One Stellar Evolution
  • II. The Stellar Structure Equations
  • B. Mass Continuity
  • 2. Example Find Mr for a star with r r0r2.
  • Mr 4p?r(r)r2dr 4pr0?r2r2dr (4p/5) r0r5.
  • Check units r0 g/cm5.
  • Mr (g/cm5)(cm5) g.

11
Part One Stellar Evolution
  • II. The Stellar Structure Equations
  • B. Mass Continuity
  • 2. Example Find Mr for a star with r r0r2.
  • Mr 4p?r(r)r2dr 4pr0?r2r2dr (4p/5) r0r5.
  • Express Mr in terms of total mass M, R, and r
  • M (4p/5) r0R5 Mr M(r/R)5.

12
Part One Stellar Evolution
  • II. The Stellar Structure Equations
  • Pressure Equation of State (EOS)
  • 1. Definition EOS is a relation between gas
    pressure and other state variables, usually r, m,
    or T.
  • 2. Barotropes and Polytropes
  • P P(r) Barotropic EOS (C.1)
  • P Krg, Polytropic EOS (C.2)
  • Where K Polytropic Constant.
  • g 1 1/n,
  • n Polytropic Index.

13
Part One Stellar Evolution
  • 3. Singular Isothermal Sphere n 8.
  • a) P Kr.
  • K T.
  • b) For large radii, r r-2.
  • Ideal Gas Equation of State (IGEOS)
  • a) Definition
  • PV Nkt (C.3)
  • P rkT/ m (C.4)
  • where k is the Boltzmann constant, m is the
    average mass of a gas particle, N total
    number of particles

14
Part One Stellar Evolution
  • Ideal Gas Equation of State (IGEOS)
  • b) Mean molecular weight, m
  • m (total atomic mass)/(total number of free
    particles) (Nm/mH). (C.5)
  • Alternate IGEOS
  • P (rkT/mmH) (C.6)

15
Part One Stellar Evolution
  • Ideal Gas Equation of State (IGEOS)
  • c) Examples
  • Completely ionized, hydrogen gas
  • m 0.5 gt 1/2 electrons, half nuclei
  • P (2rkT/mH)
  • Completely Neutral monatomic H gas
  • m 1 gt Every particle has mass mH
  • P (rkT/mH)
  • Completely Neutral diatomic H2 gas
  • m 2 gt Every particle has mass 2mH
  • P (0.5rkT/mH)

16
Part One Stellar Evolution
  • Radiation Pressure
  • Prad 1/3 aT4. (C.6)
  • In practice, a stars internal pressure is due to
    the ideal gas law and photons, i.e.,
  • Ptot (1 - b)rkT/ m b(1/3aT4), (C.7)
  • Where 0 lt b lt 1.

17
Part One Stellar Evolution
  • D. Energy Transport
  • 1. Radiative Transport
  • Opacity is important
  • Electron scattering
  • Photoionization
  • b) Derivation
  • Consider a thin shell of a BB emitter
  • At r, F(r) sT4.
  • At r dr, F(rdr) s(T dT)4
  • s(T4 4T3dT).

18
Part One Stellar Evolution
  • Note The Flux absorbed in the shell is
  • dF F(r dr) - F(r) 4sT3(r)dT. (D.1)
  • Absorption of Flux is due to opacity k
  • dF -k(r)r(r)F(r)dr. (D.2)
  • Recall that luminosity is defined as
  • L(r) 4pr2F(r ). (D.3)

19
Part One Stellar Evolution
  • Combining D.1-D.3
  • L(r) -16psr2T3(r)/(k(r)r(r))(dT/dr).
  • The final form of the radiative transport
    equation
  • dT/dr -3k(r)r(r)/64psr2T3(r) L(r).
  • (II.D.4)

20
Part One Stellar Evolution
  • Opacity
  • k k(P,T,m)
  • Kramers Opacity
  • k rT-3.5 (ignoring composition effects).
    (D.5)

21
Part One Stellar Evolution
  • 2. Convective Transport
  • dT/dr (1 - 1/G)T(r)/P(r)dP/dr,
  • (II.D.6)
  • Where G ratio of specific heats
    cP/cV
  • 5/3 for fully ionized ideal gas.

22
Part One Stellar Evolution
  • 3. Conductive Transport
  • F -KdT/dr, (II.D.7)
  • Where K is the thermal conductivity.

Conductivity is typically unimportant in stellar
interiors.
23
Part One Stellar Evolution
  • E. Energy Conservation e(r)
  • e 0 except in core.
  • Thermal Equilibrium
  • dL/dr 4pr2r(r)e(r). (II.E.1)
  • Reaction rates are extremely temperature
    sensitive

24
Part One Stellar Evolution
  • 3. Thermonuclear Reactions in Stars
  • a) Deuterium Burning
  • PMS stars
  • T 106 K
  • No ignition for M 0.03 MSUN
  • Li depletion is a signature of YSO
  • D isotopes of Li, Be, B gt 3He and 4He.

25
Part One Stellar Evolution
  • b) Hydrogen Burning
  • Main Sequence Stars
  • PP Chains
  • T 15 - (25) x 106 K
  • Low Mass Stars
  • Rate T4
  • Basically 4H gt4He yield 26.7 MeV
  • CNO Cycles
  • T 30 x 106 K
  • High Mass Stars
  • Rate T20

26
Part One Stellar Evolution
  • F. Stellar Structure Models
  • 1. Homology Relations Estimates from the SSEs.
  • 2. The Mass-Luminosity relation
  • a) Approximate the luminosity using Eqn
  • Write all derivatives as (Xsurface - Xcenter)
  • Ignore constants use average values r(r ) gt
    ltrgt
  • dT/dr -3k(r)r(r)/64psr2T3(r) L(r) gt
  • (Ts - Tc)/(R - 0) kr/R2Tc3 L
  • Tc/R kr/R2Tc3 L.

27
Part One Stellar Evolution
  • F. Stellar Structure Models
  • And so the total luminosity depends on R, Tc, k,
    r.
  • L RTC4/kr.
  • b) Replace r with M/R3
  • L R4TC4/kM.
  • c) Use IGEOS and HE to replace Tc
  • P rkT/m gt Tc P/r PR3/M.

28
Part One Stellar Evolution
  • F. Stellar Structure Models
  • dP/dr -GM(r)r(r)/r2 gt
  • (Ps - Pc)(R - 0) -Mr/R2 gt
  • Pc R(M/R2)(M/R3) so
  • Pc M2/R4, and (II.F.1)
  • Tc P/r (M2/R4)(R3/M) M/R. (II.F.2)

29
Part One Stellar Evolution
  • Now replace TC
  • L M3/k. (II.F.3)

Note Luminosity is determined by mass and
opacity gt composition. gt L varies with
metallicity.
30
Part One Stellar Evolution
  • Stellar Property Estimates
  • a) Estimate of the Suns Central Pressure
  • Use II.A.5
  • Pc/R GMltrgt/R2
  • Pc GMSUNltrSUNgt/RSUN 109 atm.
  • Actual value Pc 1011 atm.

31
Part One Stellar Evolution
  • b) Estimate of the Suns Central Temperature, Tc
  • TC PCmmH/ltrSUNgtk 12 x 106 K. Actual value
    15 x 106 K
  • c) Estimate of the Suns Luminosity
  • L -64psRSUN2Tc3/3kltrSUNgt (-TC/RSUN)
  • (9.5 x 1029/k) Js-1, where k 10-3 - 107, so
  • L 1022 - 1032 Js-1. Actual value 4 x 1026
    Js-1.

32
Part One Stellar Evolution
  • 3. Finite differencing
  • dP/dr -GMr/r2
  • gt DP/Dr -GMr/r2,
  • Where differencing (D) is made over a grid.

a) Accuracy of solution will depend on
the number of grid zones.
b) Order of solution will depend on
the Differencing scheme.
33
Part One Stellar Evolution
  • 4. The Vogt-Russell Theorem
  • HE, TE, Nonmagnetic Star
  • Mass
  • Composition
  • Stellar Equations
  • Gas Effects
  • Boundary Conditions
  • Unique Stellar Model

Examples polytropic models, Main
Sequence Stars (Pop I or II).
Write a Comment
User Comments (0)
About PowerShow.com