Title: Part One: Stellar Evolution
1Part One Stellar Evolution
- II. The Stellar Structure Equations
- A. Hydrostatic Equilibrium
- Definition Hydrostatic equilibrium is the
condition of force balance throughout a star. - Simplest case Gravity force vs. Gas Pressure
force. - Other forces may effect equilibrium
centrifugal, magnetic, exterior pressure, other
pressures
2Part One Stellar Evolution
- Spherically symmetric, uniform density star
- No exterior pressure
- Variables depend only on r.
- Consider a mass element dm with V Adr pictured
below
F P,top
A
- NII on mass element
- dm(d2r/dt2) FG FP,T FP,B. (II.A.1)
dm, r
dr
A
M(r) mass interior to radius r.
F P,bottom
3Part One Stellar Evolution
- Spherically symmetric, uniform density star
- Mass of volume element
- dm d(rV) d(rAr) rAdr. (A.2)
- So Eqn A.1 becomes
- rAdr(d2r/dt2) -G(rAdr)M(r)/r2d(FP). (A.3)
4Part One Stellar Evolution
- Spherically symmetric, uniform density star
- f) The force due to pressure is PA, so
- d(FP) d(PA) AdP A(Ptop - Pbottom).
- Combining A.1- 3 gives
- rAdr(d2r/dt2) G(rAdr)M(r)/r2AdP, or
- d2r/dt2 GM(r)/r2 (1/r)dP/dr. (A.4)
- Eqn A.4 is the Equation of Motion for dm.
5Part One Stellar Evolution
- Spherically symmetric, uniform density star
- g) For HE, acceleration is zero, and so
- dP/dr -GrM(r)/r2. (A.5)
-
HE (A.5) is a statement about the pressure
gradient inside a star with a given mass
distribution.
6Part One Stellar Evolution
- Example Find P(r) for a uniform density star
with M(r) Cr2. - dP/dr -GrM(r)/r2
- ?dP -?Gr(Cr2)/r2 dr. Note integral from
r 0 to r. -
- P(r) - P(0) -GrC?dr -GrCr.
- Thus, P(r ) Pcentral -GrCr.
-
7Part One Stellar Evolution
- Example Find P(r) for a uniform density star
with M(r) Cr2. - P(r) Pcentral -GrCr.
- Checks
- Units! What are the units for C?
- Cr2 g, so C g/cm2.
- What are the units of GrCr?
- GrCr (dyne-cm2/g2)(g/cm3)(g/cm2)(cm)
- dyne/cm2 units of pressure.
8Part One Stellar Evolution
- Example Find P(r) for a uniform density star
with M(r) Cr2. - P(r) Pcentral -GrCr.
- Solve for the central pressure Integrate from
0 to R. - P(R) - P(0) -GrC?dr -GrCR.
- Note for an isolated star, P(R) 0
-
- P(0) Pcentral GrCR.
9Part One Stellar Evolution
- II. The Stellar Structure Equations
- B. Mass Continuity
- Definition Expression for enclosed mass as a
function of position in the star. - Spherical star
- dM(r) dMr 4pr(r)r2dr. (II.B.1)
10Part One Stellar Evolution
- II. The Stellar Structure Equations
- B. Mass Continuity
- 2. Example Find Mr for a star with r r0r2.
- Mr 4p?r(r)r2dr 4pr0?r2r2dr (4p/5) r0r5.
- Check units r0 g/cm5.
- Mr (g/cm5)(cm5) g.
11Part One Stellar Evolution
- II. The Stellar Structure Equations
- B. Mass Continuity
- 2. Example Find Mr for a star with r r0r2.
- Mr 4p?r(r)r2dr 4pr0?r2r2dr (4p/5) r0r5.
- Express Mr in terms of total mass M, R, and r
- M (4p/5) r0R5 Mr M(r/R)5.
12Part One Stellar Evolution
- II. The Stellar Structure Equations
- Pressure Equation of State (EOS)
- 1. Definition EOS is a relation between gas
pressure and other state variables, usually r, m,
or T. - 2. Barotropes and Polytropes
-
- P P(r) Barotropic EOS (C.1)
- P Krg, Polytropic EOS (C.2)
- Where K Polytropic Constant.
- g 1 1/n,
- n Polytropic Index.
13Part One Stellar Evolution
- 3. Singular Isothermal Sphere n 8.
- a) P Kr.
- K T.
- b) For large radii, r r-2.
- Ideal Gas Equation of State (IGEOS)
- a) Definition
- PV Nkt (C.3)
- P rkT/ m (C.4)
- where k is the Boltzmann constant, m is the
average mass of a gas particle, N total
number of particles
14Part One Stellar Evolution
- Ideal Gas Equation of State (IGEOS)
- b) Mean molecular weight, m
- m (total atomic mass)/(total number of free
particles) (Nm/mH). (C.5) - Alternate IGEOS
- P (rkT/mmH) (C.6)
-
15Part One Stellar Evolution
- Ideal Gas Equation of State (IGEOS)
- c) Examples
- Completely ionized, hydrogen gas
- m 0.5 gt 1/2 electrons, half nuclei
- P (2rkT/mH)
- Completely Neutral monatomic H gas
- m 1 gt Every particle has mass mH
- P (rkT/mH)
- Completely Neutral diatomic H2 gas
- m 2 gt Every particle has mass 2mH
- P (0.5rkT/mH)
-
16Part One Stellar Evolution
- Radiation Pressure
- Prad 1/3 aT4. (C.6)
- In practice, a stars internal pressure is due to
the ideal gas law and photons, i.e., - Ptot (1 - b)rkT/ m b(1/3aT4), (C.7)
- Where 0 lt b lt 1.
17Part One Stellar Evolution
- D. Energy Transport
- 1. Radiative Transport
- Opacity is important
- Electron scattering
- Photoionization
- b) Derivation
- Consider a thin shell of a BB emitter
- At r, F(r) sT4.
- At r dr, F(rdr) s(T dT)4
- s(T4 4T3dT).
18Part One Stellar Evolution
- Note The Flux absorbed in the shell is
- dF F(r dr) - F(r) 4sT3(r)dT. (D.1)
- Absorption of Flux is due to opacity k
- dF -k(r)r(r)F(r)dr. (D.2)
- Recall that luminosity is defined as
- L(r) 4pr2F(r ). (D.3)
-
19Part One Stellar Evolution
- Combining D.1-D.3
- L(r) -16psr2T3(r)/(k(r)r(r))(dT/dr).
- The final form of the radiative transport
equation - dT/dr -3k(r)r(r)/64psr2T3(r) L(r).
- (II.D.4)
20Part One Stellar Evolution
- Opacity
- k k(P,T,m)
- Kramers Opacity
- k rT-3.5 (ignoring composition effects).
(D.5)
21Part One Stellar Evolution
- 2. Convective Transport
- dT/dr (1 - 1/G)T(r)/P(r)dP/dr,
- (II.D.6)
- Where G ratio of specific heats
cP/cV - 5/3 for fully ionized ideal gas.
22Part One Stellar Evolution
- 3. Conductive Transport
- F -KdT/dr, (II.D.7)
- Where K is the thermal conductivity.
Conductivity is typically unimportant in stellar
interiors.
23Part One Stellar Evolution
- E. Energy Conservation e(r)
- e 0 except in core.
- Thermal Equilibrium
- dL/dr 4pr2r(r)e(r). (II.E.1)
- Reaction rates are extremely temperature
sensitive
24Part One Stellar Evolution
- 3. Thermonuclear Reactions in Stars
- a) Deuterium Burning
- PMS stars
- T 106 K
- No ignition for M 0.03 MSUN
- Li depletion is a signature of YSO
- D isotopes of Li, Be, B gt 3He and 4He.
25Part One Stellar Evolution
- b) Hydrogen Burning
- Main Sequence Stars
- PP Chains
- T 15 - (25) x 106 K
- Low Mass Stars
- Rate T4
- Basically 4H gt4He yield 26.7 MeV
- CNO Cycles
- T 30 x 106 K
- High Mass Stars
- Rate T20
26Part One Stellar Evolution
- F. Stellar Structure Models
- 1. Homology Relations Estimates from the SSEs.
- 2. The Mass-Luminosity relation
- a) Approximate the luminosity using Eqn
- Write all derivatives as (Xsurface - Xcenter)
- Ignore constants use average values r(r ) gt
ltrgt - dT/dr -3k(r)r(r)/64psr2T3(r) L(r) gt
- (Ts - Tc)/(R - 0) kr/R2Tc3 L
- Tc/R kr/R2Tc3 L.
27Part One Stellar Evolution
- F. Stellar Structure Models
- And so the total luminosity depends on R, Tc, k,
r. - L RTC4/kr.
- b) Replace r with M/R3
- L R4TC4/kM.
- c) Use IGEOS and HE to replace Tc
- P rkT/m gt Tc P/r PR3/M.
-
28Part One Stellar Evolution
- F. Stellar Structure Models
- dP/dr -GM(r)r(r)/r2 gt
- (Ps - Pc)(R - 0) -Mr/R2 gt
- Pc R(M/R2)(M/R3) so
- Pc M2/R4, and (II.F.1)
- Tc P/r (M2/R4)(R3/M) M/R. (II.F.2)
-
29Part One Stellar Evolution
- Now replace TC
- L M3/k. (II.F.3)
-
Note Luminosity is determined by mass and
opacity gt composition. gt L varies with
metallicity.
30Part One Stellar Evolution
- Stellar Property Estimates
- a) Estimate of the Suns Central Pressure
- Use II.A.5
- Pc/R GMltrgt/R2
- Pc GMSUNltrSUNgt/RSUN 109 atm.
- Actual value Pc 1011 atm.
31Part One Stellar Evolution
- b) Estimate of the Suns Central Temperature, Tc
- TC PCmmH/ltrSUNgtk 12 x 106 K. Actual value
15 x 106 K - c) Estimate of the Suns Luminosity
- L -64psRSUN2Tc3/3kltrSUNgt (-TC/RSUN)
- (9.5 x 1029/k) Js-1, where k 10-3 - 107, so
- L 1022 - 1032 Js-1. Actual value 4 x 1026
Js-1.
32Part One Stellar Evolution
- 3. Finite differencing
- dP/dr -GMr/r2
- gt DP/Dr -GMr/r2,
- Where differencing (D) is made over a grid.
-
-
a) Accuracy of solution will depend on
the number of grid zones.
b) Order of solution will depend on
the Differencing scheme.
33Part One Stellar Evolution
- 4. The Vogt-Russell Theorem
- HE, TE, Nonmagnetic Star
- Mass
- Composition
- Stellar Equations
- Gas Effects
- Boundary Conditions
- Unique Stellar Model
Examples polytropic models, Main
Sequence Stars (Pop I or II).