Chapter 7: Trigonometric Functions - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Chapter 7: Trigonometric Functions

Description:

Chapter 7: Trigonometric Functions L7.4 & 5: Graphing the Trigonometric Functions (Part 2) The sine function 45 90 135 180 270 225 0 315 90 180 ... – PowerPoint PPT presentation

Number of Views:270
Avg rating:3.0/5.0
Slides: 15
Provided by: danielleb2
Category:

less

Transcript and Presenter's Notes

Title: Chapter 7: Trigonometric Functions


1
Chapter 7 Trigonometric Functions
L7.4 5 Graphing the Trigonometric
Functions (Part 2)
2
The sine function
Imagine a particle on the unit circle, starting
at (1,0) and rotating counterclockwise around the
origin. Every position of the particle
corresponds with an angle, ?, where y sin ?.
As the particle moves through the four quadrants,
we get four pieces of the sin graph
I. From 0 to 90 the y-coordinate
increases from 0 to 1 II. From 90 to 180
the y-coordinate decreases from 1 to 0 III. From
180 to 270 the y-coordinate decreases from 0 to
-1 IV. From 270 to 360 the y-coordinate
increases from -1 to 0
? sin ?
0 0
p/2 1
p 0
3p/2 -1
2p 0
Interactive Sine Unwrap
3
Sine is a periodic function p 2p
sin ? Domain (angle measures) all real
numbers, (-8, 8) Range (ratio
of sides) -1 to 1, inclusive -1, 1
sin ? is an odd function it is symmetric wrt the
origin.
sin(-?) -sin(?)
4
The cosine function
Imagine a particle on the unit circle, starting
at (1,0) and rotating counterclockwise around the
origin. Every position of the particle
corresponds with an angle, ?, where x cos ?.
As the particle moves through the four quadrants,
we get four pieces of the cos graph
I. From 0 to 90 the x-coordinate
decreases from 1 to 0 II. From 90 to 180
the x-coordinate decreases from 0 to -1 III.
From 180 to 270 the x-coordinate increases from
-1 to 0 IV. From 270 to 360 the x-coordinate
increases from 0 to 1
? cos ?
0 1
p/2 0
p -1
3p/2 0
2p 1
5
Cosine is a periodic function p 2p
cos ? Domain (angle measures) all real
numbers, (-8, 8) Range (ratio
of sides) -1 to 1, inclusive -1, 1
cos ? is an even function it is symmetric wrt
the y-axis.
cos(-?) cos(?)
6
Tangent Function
Recall that . Since cos ?
is in the denominator, when cos ? 0, tan ? is
undefined. This occurs _at_ p intervals, offset by
p/2 -p/2, p/2, 3p/2, 5p/2, Lets
create an x/y table from ? -p/2 to ? p/2
(one p interval), with 5
input angle values.
? tan ?
-p/2 -8
-p/4 -1
0 0
p/4 1
p/2 8
? sin ? cos ? tan ?
-p/2
-p/4
0
p/4
p/2
0
-8
-1
-1
1
0
0
1
0
1
8
7
Graph of Tangent Function Periodic
Vertical asymptotes where cos ? 0
? tan ?
-p/2 -8
-p/4 -1
0 0
p/4 1
p/2 8
-3p/2
3p/2
tan ? Domain (angle measures) ? ? p/2 pn
Range (ratio of sides) all real numbers
(-8, 8)
tan ? is an odd function it is symmetric wrt the
origin.
tan(-?) -tan(?)
8
Cotangent Function
Recall that . Since sin ?
is in the denominator, when sin ? 0, cot ? is
undefined. This occurs _at_ p intervals, starting
at 0 -p, 0, p, 2p, Lets create an x/y
table from ? 0 to ? p (one p interval),
with 5 input angle values.
? cot ?
0 8
p/4 1
p/2 0
3p/4 -1
p -8
? sin ? cos ? cot ?
0
p/4
p/2
3p/4
p
1
8
0
1
0
1
0
-1
-8
1
0
9
Graph of Cotangent Function Periodic
Vertical asymptotes where sin ? 0
cot ?
? tan ?
0 8
p/4 1
p/2 0
3p/4 -1
p -8
-3p/2
-p
p
-p/2
p/2
3p/2
cot ? Domain (angle measures) ? ? pn
Range (ratio of sides) all real numbers (-8, 8)
cot ? is an odd function it is symmetric wrt the
origin.
tan(-?) -tan(?)
10
Cosecant is the reciprocal of sine
Vertical asymptotes where sin ? 0
csc ?
?
0
p
-p
-3p
2p
3p
-2p
sin ?
One period 2p
sin ? and csc ? are odd (symm wrt origin)
csc ? Domain ? ? pn
(where sin ? 0) Range csc ? 1
or (-8, -1 U 1, 8
sin ? Domain (-8, 8) Range -1,
1
11
Secant is the reciprocal of cosine
sec ? Domain ? ? p/2 pn
(where cos ? 0) Range sec ?
1 or (-8, -1 U 1, 8
cos ? and sec ? are even (symm wrt y-axis)
cos ? Domain (-8, 8) Range -1,
1
12
Summary of Graph Characteristics
Defn ? ? Defn ? ? Period Domain Range Even/Odd
sin ?
csc ?
cos ?
sec ?
tan ?
cot ?
13
Summary of Graph Characteristics
Defn ? ? Defn ? ? Period Domain Range Even/Odd
sin ? opp hyp y r 2p (-8, 8) -1 x 1 or -1, 1 odd
csc ? 1 .sin? r .y 2p ? ? pn csc ? 1 or (-8, -1 U 1, 8) odd
cos ? adj hyp x r 2p (-8, 8) All Reals or (-8, 8) even
sec ? 1 . sin? r y 2p ? ? p2 pn sec ? 1 or (-8, -1 U 1, 8) even
tan ? sin? cos? y x p ? ? p2 pn All Reals or (-8, 8) odd
cot ? cos? .sin? x y p ? ? pn All Reals or (-8, 8) odd
14
Graphing Trig Functions on the TI89
  • Mode critical radian vs. degree
  • Graphing ZoomTrig sets x-coordinates as multiple
    of p/2
  • Graph the following in radian mode sin(x), cos x
    use trace to observe x/y values
  • Switch to degree mode and re-graph the above
  • What do you think would happen if you graphed
    cos(x), or 3cos(x) 2? Well study these
    transformations in the next chapter

Enter the function. Use ZoomTrig.                                             This is the graph.
                                                                                                                  
Write a Comment
User Comments (0)
About PowerShow.com