Title: Elements of Feedback Control
1Open vs Closed Loop Frequency Response And
Frequency Domain Specifications
G(s)
C(s)
Goal 1) Define typical good freq resp shape
for closed-loop 2) Relate closed-loop
freq response shape to step response shape
3) Relate closed-loop freq shape to open-loop
freq resp shape 4) Design C(s) to make
C(s)G(s) into good shape.
2(No Transcript)
3Prototype 2nd order system closed-loop frequency
response
For small zeta, resonance freq is about wn BW
ranges from 0.5wn to 1.5 wn For good z range, BW
is 0.8 to 1.1 wn So take BW wn
z0.1
0.2
0.3
No resonance for z lt 0.7 Mr1dB for
z0.6 Mr3dB for z0.5 Mr7dB for z0.4
w/wn
40.2
z0.1
0.3
0.4
wgc
In the range of good zeta, wgc is about 0.65
times to 0.8 times wn
w/wn
5In the range of good zeta, PM is about 100z
z0.1
0.2
0.3
0.4
w/wn
6Important relationships
- Prototype wn, open-loop wgc, closed-loop BW are
all very close to each other - When there is visible resonance peak, it is
located near or just below wn, - This happens when z lt 0.6
- When z gt 0.7, no resonance
- z determines phase margin and Mp
- z 0.4 0.5 0.6 0.7
- PM 44 53 61 67 deg 100z
- Mp 25 16 10 5
7Important relationships
- wgc determines wn and bandwidth
- As wgc ?, ts, td, tr, tp, etc ?
- Low frequency gain determines steady state
tracking - L.F. magnitude plot slope/(-20dB/dec) type
- L.F. asymptotic line evaluated at w 1 the
value gives Kp, Kv, or Ka, depending on type - High frequency gain determines noise immunity
8Desired Bode plot shape
9Proportional controller design
- Obtain open loop Bode plot
- Convert design specs into Bode plot req.
- Select KP based on requirements
- For improving ess KP Kp,v,a,des / Kp,v,a,act
- For fixing Mp select wgcd to be the freq at
which PM is sufficient, and KP 1/G(jwgcd) - For fixing speed from td, tr, tp, or ts
requirement, find out wn, let wgcd wn and
choose KP as above
10(No Transcript)
11(No Transcript)
12- clear all
- n0 0 40 d1 2 0
- figure(1) clf margin(n,d)
- proportional control design
- figure(1) hold on grid Vaxis
- Mp 10/100
- zeta sqrt((log(Mp))2/(pi2(log(Mp))2))
- PMd zeta 100 3
- semilogx(V(12), PMd-180 PMd-180,'r')
- get desired w_gc
- xginput(1) w_gcd x(1)
- KP 1/abs(polyval(n,jw_gcd)/polyval(d,jw_gcd))
- figure(2) margin(KPn,d)
- figure(3) stepchar(KPn, dKPn)
13(No Transcript)
14(No Transcript)
15n1 d1/5/50 1/51/50 1 0 figure(1) clf
margin(n,d) proportional control
design figure(1) hold on grid Vaxis Mp
10/100 zeta sqrt((log(Mp))2/(pi2(log(Mp))2)
) PMd zeta 100 3 semilogx(V(12),
PMd-180 PMd-180,'r') get desired
w_gc xginput(1) w_gcd x(1) Kp
1/abs(polyval(n,jw_gcd)/polyval(d,jw_gcd)) Kv
Kpn(1)/d(3) ess0.01 Kvd1/ess z w_gcd/5
p z/(Kvd/Kv) ngc conv(n, Kp1 z) dgc
conv(d, 1 p) figure(1) hold on
margin(ngc,dgc) ncl,dclfeedback(ngc,dgc,1,1)
figure(2) step(ncl,dcl) grid figure(3)
margin(ncl1.414,dcl) grid
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23KP/KD
20log(KP)
Place wgcd here
24(No Transcript)
25PD Control
- C(s)KP KDs KP(1TDs)
- For fixing wgcd and PMd
- Compute wgcd from tr, td, etc
- Compute PMd from Mp
- Compute f PMd PM_at_wgcd
- Compute TD tan(f)/wgcd
- KP 1/sqrt(1Td2wgcd2)/abs(G(jwgcd))
- KDKPTD
26Example
C(s)
G(s)
Want maximum overshoot lt 10 rise
time lt 0.3 sec
27(No Transcript)
28(No Transcript)
29- n0 0 1 d0.02 0.3 1 0
- figure(1) clf margin(n,d)
- Mp 10/100
- zeta sqrt((log(Mp))2/(pi2(log(Mp))2))
- PMd zeta 100 3
- tr 0.3 w_n1.8/tr w_gcd w_n
- PM angle(polyval(n,jw_gcd)/polyval(d,jw_gcd))
- phi PMdpi/180-PM Td tan(phi)/w_gcd
- KP 1/abs(polyval(n,jw_gcd)/polyval(d,jw_gcd))
- KP KP/sqrt(1Td2w_gcd2) KDKPTd
- ngc conv(n, KD KP)
- figure(2) margin(ngc,d)
- figure(3) stepchar(ngc, dngc)
Could be a little less
30(No Transcript)
31Less than spec
32Variation
- Restricted to using KP 1
- Meet Mp requirement
- Find wgc and PM
- Find PMd
- Let f PMd PM (a few degrees)
- Compute TD tan(f)/wgcd
- KP 1 KDKPTD
33(No Transcript)
34(No Transcript)
35- n0 0 5 d0.02 0.3 1 0
- figure(1) clf margin(n,d)
- Mp 10/100
- zeta sqrt((log(Mp))2/(pi2(log(Mp))2))
- PMd zeta 100 10
- GM,PM,wgc,wpcmargin(n,d)
- phi (PMd-PM)pi/180 Td tan(phi)/wgc
- KP1 KDKPTd
- ngc conv(n, KD KP)
- figure(2) margin(ngc,d)
- figure(3) stepchar(ngc, dngc)
36(No Transcript)
37(No Transcript)
38- n0 0 5 d0.02 0.3 1 0
- figure(1) clf margin(n,d)
- Mp 10/100
- zeta sqrt((log(Mp))2/(pi2(log(Mp))2))
- PMd zeta 100 18
- GM,PM,wgc,wpcmargin(n,d)
- phi (PMd-PM)pi/180 Td tan(phi)/wgc
- Kp1 KdKpTd
- ngc conv(n, Kd Kp)
- figure(2) margin(ngc,d)
- figure(3) stepchar(ngc, dngc)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)