V.V.Sidorenko - PowerPoint PPT Presentation

About This Presentation
Title:

V.V.Sidorenko

Description:

Quasi-satellite orbits in the context of coorbital dynamics V.V.Sidorenko (Keldysh Institute of Applied Mathematics, Moscow, RUSSIA) A.V.Artemyev, A.I.Neishtadt, L.M ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 18
Provided by: Sidor
Category:

less

Transcript and Presenter's Notes

Title: V.V.Sidorenko


1
Quasi-satellite orbits in the context of
coorbital dynamics
  • V.V.Sidorenko
  • (Keldysh Institute of Applied Mathematics,
    Moscow, RUSSIA)
  • A.V.Artemyev, A.I.Neishtadt, L.M.Zelenyi
  • (Space Research Institute, Moscow, RUSSIA)

Moscow, 2012
2
Quasi-satellite orbits
(based on pictures from http//www.astro.uwo.ca/w
iegert/quasi/quasi.html)
11 mean motion resonance!
Resonance phase jl-l librates around 0 (l and
l are the mean longitudes of the asteroid and of
the planet)
3
Quasi-satellite orbits
Historical background
  • J. Jackson (1913) the first(?) discussion of
    QS-orbits
  • A.Yu.Kogan (1988), M.L.Lidov, M.A.Vashkovyak
    (1994) the consideration of the QS-orbits in
    connection with the russian space project
    Phobos
  • Namouni(1999) , Namouni et. al (1999), S.Mikkola,
    K.Innanen (2004), - the investigations of the
    secular evolution in the case of the motion in
    QS-orbit

Real asteroids in QS-orbits
2002VE68 Venus QS 2003YN107, 2004GU9,
2006FV35 Earth QS 2001QQ199, 2004AE9
Jupiters QS
4
Secular effects examples
Nonplanar circular restricted three-body problem
Sun-Planet-Asteroid
Parameters
5
Phase portrait of the slow motion mathching of
the trajectories on the uncertainty curve
6
Scaling
A the motion in QS-orbit is perpetual
7
Nonplanar circular restricted three-body problem
Sun-Planet-Asteroid
Time scales at the resonance T1 - orbital motions
periods T2 - timescale of rotations/oscillations
of the resonant argument (some
combination of asteroid and planet mean
longitudes) T3 - secular evolution of
asteroids eccentricity e, inclination
i, argument of prihelion ? and ascending
node longitude O .
T1 ltlt T2 ltlt T3
Strategy double averaging of the motion equations
8
Resonant approximation
Scale transformation
Slow variables
Slow-fast system
  • approximate
  • integral of
  • the problem

SF-Hamiltonian
9
Regular variables
Relationship with the Keplerian elements
10
Averaging over the fast subsystem solutions on
the level ? ?
Problem what solution of the fast subsystem
should be used for averaging ?
QS-orbit or HS-orbit?
11
Asteroid 164207 (2004GU9)
12
Asteroid 164207 (2004GU9)
13
Asteroid 164207 (2004GU9 )
14
Asteroid 164207 (2004GU9)
15
Asteroid 2006FV35
16
Asteroid 2006FV35
17
Conclusions
  • Row classification of slow evolution scenarios is
    presented
  • The criterion to distinguish between the
    perpertual and temporarily motion in QS-orbit is
    established
Write a Comment
User Comments (0)
About PowerShow.com