Title: ECE651 Digital Signal Processing I
1ECE651 Digital Signal Processing I Digital
IIR Filter Design
2- Introduction
- Some Preliminaries on Analog Filters
- Digital IIR Filter Design (s z)
- Impulse Invariance Transformation
- Bilinear Transformation
- Frequency Band Transformations
- Analog Domain (s s )
- Digital Domain (z z)
3Introduction
Analog filter Infinitely long impulse response
S Z (complex-valued mapping)
Digital IIR filter Infinitely long impulse
response
4Introduction
5Introduction
- Advantages
- Analog filter design tables available
- Filter transformation (s z) tables
available - Frequency band transformation (s s / z z)
available - Disadvantages
- No control over the phase characteristics of
the IIR filter - Magnitude only design
6Introduction
- Other Design Approaches
- Simultaneously approximate both the magnitude
and the phase response - Require advanced optimization tools
- Not covered in the class
7Preliminaries On Analog Filters
Analog lowpass filter specifications
passband ripple parameter
A stopband attenuation parameter
passband cutoff frequency (rad/sec)
stopband cutoff frequency (rad/sec)
8Preliminaries On Analog Filters
Analog lowpass filter specifications
passband ripple in dB
stopband attenuation in dB
9Preliminaries On Analog Filters
Analog lowpass filter system function
- Poles and zeros of magnitude-squared function
are distributed in a mirror-image symmetry with
respect to the imaginary axis - For real filters, poles and zeros occur in
complex conjugate pairs ( mirror symmetry with
respect to real axis)
10Preliminaries On Analog Filters
Analog lowpass filter system function
- Pick up poles On LHP
- Pick up zeros on LHP or
- Imaginary axis
Causal
Stable
11Preliminaries On Analog Filters
- Prototype analog filters
- Butterworth
- Chebyshev (Type I and II)
- Elliptic
12Preliminaries On Analog Filters
Butterworth lowpass filters (Magnitude-Squared
Response)
The Cutoff frequency (rand/sec)
N The order of the filter
13Preliminaries On Analog Filters
Butterworth lowpass filters (System Function)
14Preliminaries On Analog Filters
Butterworth lowpass filters (Design equations)
15Digital IIR Filter Design
- S - Z transformation
- Complex-valued mappings
- Derived by preserving different aspects of analog
filters and digital filters
16Digital IIR Filter Design
- Impulse Invariance transformation
- Preserve the shape of impulse response
17Digital IIR Filter Design
- Impulse Invariance transformation (Design
Procedure) - (MATLAB
function impinvar) - Choose T and determine the analog frequencies
- Design an analog filter using
specifications - Partial fraction expansion
- Transform analog poles into digital poles
to obtain
18Digital IIR Filter Design
- Impulse Invariance transformation (Aliasing)
gtgt f00.015T0.1 gtgt zexp(j2pifT) gtgt
zH(1-0.8966./z)./(1-1.5595./z0.6065./z./z) gtgt
sj2pif gtgt sH(1s)./(s.25s6) gtgt
plot(f,abs(zH),f,abs(sH)/T)legend('Digitital','An
alog') gtgttitle('Magnitude Response of Analog and
Digital IIR Filters')
19Digital IIR Filter Design
- Impulse Invariance transformation
- Advantages
- Stable design
- Analog frequency and digital frequency are
linearly related - Disadvantage
- Aliasing
- Useful only when the analog filter is
band-limited (LPF and BPF)
20Digital IIR Filter Design
- Preserve the system function representation
21Digital IIR Filter Design
- Bilinear transformation (Design Procedure)
- (MATLAB
function bilinear) - Choose T (1)and determine the analog frequencies
- Design an analog filter using
specifications - Bilinear transformation
22Digital IIR Filter Design
- Bilinear transformation
- Advantages
- Stable design
- No aliasing
- No restriction on the type of filters that can be
transformed
23Frequency DomainTransformations
24Frequency DomainTransformations