ECE651 Digital Signal Processing I - PowerPoint PPT Presentation

About This Presentation
Title:

ECE651 Digital Signal Processing I

Description:

ECE651 Digital Signal Processing I Digital IIR Filter Design Introduction Some Preliminaries on Analog Filters Digital IIR Filter Design (s z) Impulse ... – PowerPoint PPT presentation

Number of Views:117
Avg rating:3.0/5.0
Slides: 25
Provided by: xha
Learn more at: https://www.ecs.csun.edu
Category:

less

Transcript and Presenter's Notes

Title: ECE651 Digital Signal Processing I


1
ECE651 Digital Signal Processing I Digital
IIR Filter Design
2
  • Introduction
  • Some Preliminaries on Analog Filters
  • Digital IIR Filter Design (s z)
  • Impulse Invariance Transformation
  • Bilinear Transformation
  • Frequency Band Transformations
  • Analog Domain (s s )
  • Digital Domain (z z)

3
Introduction
Analog filter Infinitely long impulse response
S Z (complex-valued mapping)
Digital IIR filter Infinitely long impulse
response
4
Introduction
5
Introduction
  • Advantages
  • Analog filter design tables available
  • Filter transformation (s z) tables
    available
  • Frequency band transformation (s s / z z)
    available
  • Disadvantages
  • No control over the phase characteristics of
    the IIR filter
  • Magnitude only design

6
Introduction
  • Other Design Approaches
  • Simultaneously approximate both the magnitude
    and the phase response
  • Require advanced optimization tools
  • Not covered in the class

7
Preliminaries On Analog Filters
Analog lowpass filter specifications
passband ripple parameter
A stopband attenuation parameter
passband cutoff frequency (rad/sec)
stopband cutoff frequency (rad/sec)
8
Preliminaries On Analog Filters
Analog lowpass filter specifications
passband ripple in dB
stopband attenuation in dB
9
Preliminaries On Analog Filters
Analog lowpass filter system function
  • Poles and zeros of magnitude-squared function
    are distributed in a mirror-image symmetry with
    respect to the imaginary axis
  • For real filters, poles and zeros occur in
    complex conjugate pairs ( mirror symmetry with
    respect to real axis)

10
Preliminaries On Analog Filters
Analog lowpass filter system function
  • Pick up poles On LHP
  • Pick up zeros on LHP or
  • Imaginary axis

Causal
Stable
11
Preliminaries On Analog Filters
  • Prototype analog filters
  • Butterworth
  • Chebyshev (Type I and II)
  • Elliptic

12
Preliminaries On Analog Filters
Butterworth lowpass filters (Magnitude-Squared
Response)
The Cutoff frequency (rand/sec)
N The order of the filter
13
Preliminaries On Analog Filters
Butterworth lowpass filters (System Function)
14
Preliminaries On Analog Filters
Butterworth lowpass filters (Design equations)
15
Digital IIR Filter Design
  • S - Z transformation
  • Complex-valued mappings
  • Derived by preserving different aspects of analog
    filters and digital filters

16
Digital IIR Filter Design
  • Impulse Invariance transformation
  • Preserve the shape of impulse response

17
Digital IIR Filter Design
  • Impulse Invariance transformation (Design
    Procedure)
  • (MATLAB
    function impinvar)
  • Choose T and determine the analog frequencies
  • Design an analog filter using
    specifications
  • Partial fraction expansion
  • Transform analog poles into digital poles
    to obtain

18
Digital IIR Filter Design
  • Impulse Invariance transformation (Aliasing)

gtgt f00.015T0.1 gtgt zexp(j2pifT) gtgt
zH(1-0.8966./z)./(1-1.5595./z0.6065./z./z) gtgt
sj2pif gtgt sH(1s)./(s.25s6) gtgt
plot(f,abs(zH),f,abs(sH)/T)legend('Digitital','An
alog') gtgttitle('Magnitude Response of Analog and
Digital IIR Filters')
19
Digital IIR Filter Design
  • Impulse Invariance transformation
  • Advantages
  • Stable design
  • Analog frequency and digital frequency are
    linearly related
  • Disadvantage
  • Aliasing
  • Useful only when the analog filter is
    band-limited (LPF and BPF)

20
Digital IIR Filter Design
  • Bilinear transformation
  • Preserve the system function representation

21
Digital IIR Filter Design
  • Bilinear transformation (Design Procedure)
  • (MATLAB
    function bilinear)
  • Choose T (1)and determine the analog frequencies
  • Design an analog filter using
    specifications
  • Bilinear transformation

22
Digital IIR Filter Design
  • Bilinear transformation
  • Advantages
  • Stable design
  • No aliasing
  • No restriction on the type of filters that can be
    transformed

23
Frequency DomainTransformations
  • Analog Domain

24
Frequency DomainTransformations
  • Digital Domain
Write a Comment
User Comments (0)
About PowerShow.com