Title: QTL Mapping in Natural Populations
1QTL Mapping in Natural Populations
- Basic theory for QTL mapping is derived from
linkage analysis in controlled crosses - There is a group of species in which it is not
possible to make crosses - QTL mapping in such species should be based on
existing populations
2Association between marker and QTL
Linkage disequilibrium mapping natural
population
- -Marker, Prob(M)p, Prob(m)1-p
- -QTL, Prob(A)q, Prob(a)1-q
- Four haplotypes
- Prob(MA)p11pqD pp11p10
- Prob(Ma)p10p(1-q)-D qp11p01
- Prob(mA)p01(1-p)q-D Dp11p00-p10p01
- Prob(ma)p00(1-p)(1-q)D
3Joint and conditional (?ji) genotype prob.
between marker and QTL
- AA Aa aa Obs
- MM p112 2p11p10 p102 n2
- Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
- mm p012 2p01p00 p002 n0
- MM p112 2p11p10 p102 n2
- p2 p2 p2
- Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
- 2p(1-p) 2p(1-p)
2p(1-p) - mm p012 2p01p00 p002 n0
- (1-p)2 (1-p)2 (1-p)2
4Mixture model-based likelihoodwith marker
information
Linkage disequilibrium mapping natural
population
- L(?y,M)?i1n?2if2(yi) ?1if1(yi)
?0if0(yi) - Sam- Height Marker genotype QTL genotype
- ple (cm, y) M AA Aa aa
- 1 184 MM (2) ?22i ?12i ?02i
- 2 185 MM (2) ?22i ?12i ?02i
- 3 180 Mm (1) ?21i ?11i ?01i
- 4 182 Mm (1) ?21i ?11i ?01i
- 5 167 Mm (1) ?21i ?11i ?01i
- 6 169 Mm (1) ?21i ?11i ?01i
- 7 165 mm (0) ?20i ?10i ?00i
- 8 166 mm (0) ?20i ?10i ?00i
Prior prob.
5Conditional probabilities of the QTL genotypes
(missing) based on marker genotypes (observed)
Linkage disequilibrium mapping natural
population
- L(?y,M)
- ?i1n ?2if2(yi) ?1if1(yi) ?0if0(yi)
- ?i1n2 ?22if2(yi) ?12if1(yi)
?02if0(yi) Conditional on 2 (n2) - ? ?i1n1 ?21if2(yi) ?11if1(yi)
?01if0(yi) Conditional on 1 (n1) - ? ?i1n0 ?20if2(yi) ?10if1(yi)
?00if0(yi) Conditional on 0 (n0)
6Normal distributions of phenotypic values for
each QTL genotype group
Linkage disequilibrium mapping natural
population
- f2(yi) 1/(2??2)1/2exp-(yi-?2)2/(2?2),
- ?2 ? a
- f1(yi) 1/(2??2)1/2exp-(yi-?1)2/(2?2),
- ?1 ? d
- f0(yi) 1/(2??2)1/2exp-(yi-?0)2/(2?2),
- ?0 ? - a
7Differentiating L with respect to each unknown
parameter, setting derivatives equal zero and
solving the log-likelihood equations
Linkage disequilibrium mapping natural
population
- L(?y,M) ?i1n?2if2(yi) ?1if1(yi)
?0if0(yi) - log L(?y,M) ?i1n log?2if2(yi) ?1if1(yi)
?0if0(yi) - Define
- ?2i ?2if1(yi)/?2if2(yi) ?1if1(yi)
?0if0(yi) (1) - ?1i ?1if1(yi)/?2if2(yi) ?1if1(yi)
?0if0(yi) (2) - ?0i ?0if1(yi)/?2if2(yi) ?1if1(yi)
?0if0(yi) (3) - ?2 ?i1n(?2iyi)/ ?i1n?2i (4)
- ?1 ?i1n(?1iyi)/ ?i1n?1i (5)
- ?0 ?i1n(?0iyi)/ ?i1n?0i (6)
- ?2 1/n?i1n?2i(yi-?2)2?1i(yi-?1)2?0i(yi-?0
)2 (7)
8- Complete data Prior prob
- QQ Qq qq Obs
- MM p112 2p11p10 p102 n2
- Mm 2p11p01 2(p11p00p10p01) 2p10p00 n1
- mm p012 2p01p00 p002 n0
- QQ Qq qq Obs
- MM n22 n21 n20 n2
- Mm n12 n11 n10 n1
- mm n02 n01 n00 n0
- p112n22 (n21n12) ?n11/2n,
- p102n20 (n21n10) (1-?)n11/2n,
- p012n02 (n12n01) (1-?)n11/2n,
- p112n00 (n10n01) ?n11/2n,
?p11p00/(p11p00p10p01)
9- Incomplete (observed) data
- Posterior prob
- QQ Qq qq Obs
- MM ?22i ?12i ?02i n2
- Mm ?21i ?11i ?01i n1
- mm ?20i ?10i ?00i n0
- p11?i1n2(2?22i?12i)?i1n1(?21i??11i)/2n
, (8) - p10?i1n2(2?02i?12i)?i1n1?01i(1-?)?11i
/2n, (9) - p01?i1n0(2?20i?10i)?i1n1?21i(1-?)?11i
/2n, (10) - p00?i1n2(2?00i?10i)?i1n1(?01i??11i)/2n
(11)
10EM algorithm
- (1) Give initiate values ?(0) (?2,?1,?0,?2,p11,p1
0,p01,p00)(0) - (2) Calculate ?2i(1), ?1i(1) and ?0i(1) using
Eqs. 1-3, - (3) Calculate ?(1) using ?2i(1), ?1i(1) and
?0i(1) based on - Eqs. 4-11,
- (4) Repeat (2) and (3) until convergence.
11Hypothesis Tests
- Is there a significant QTL?
- H0 µ2 µ1 µ1
- H1 Not H0
- LR1 -2ln L0 L1
- Critical threshold determined from permutation
tests
12Hypothesis Tests
- Can this QTL be detected by the marker?
- H0 D 0
- H1 Not H0
- LR2 -2ln L0 L1
- Critical threshold determined from chi-square
table (df 1)
13A case study from human populations
- 105 black women and 538 white women
- 10 SNPs genotyped within 5 candidates for human
obesity - Two obesity traits, the amount of body fat (body
mass index, BMI) and its distribution throughout
the body (waist to hip circumference ratio, WHR)
14Objective
- Detect quantitative trait nucleotides (QTNs)
predisposing to human obesity traits, BMI and WHR
15- BMI
- SNP Chrom. Black White
- ADRA1A 8p21 q 0.20
- D 0.04
- a 11.40
- d -2.63
- LR 3.90 NS
-
- WHR
- ADRB1 10q24 q 0.83
- D -0.07
- a -0.15
- d -0.24
- LR 5.91 NS
- ADRB2 5q32-33 q 0.16
- D 0.07
- a 0.16
- d -0.20
16(No Transcript)
17(No Transcript)