Title: Dan Henningson
1Input-output analysis, model reduction and
control applied to the Blasius boundary layer -
using balanced modes
- Dan Henningson
- collaborators
- Shervin Bagheri, Espen Åkervik
- Luca Brandt, Peter Schmid
2Linearized Navier-Stokes for Blasius flow
Discrete formulation
Continuous formulation
3 Input-output configuration for linearized N-S
4Solution to the complete input-output problem
- Initial value problem flow stability
- Forced problem input-output analysis
5Ginzburg-Landau example
- Entire dynamics vs. input-output time signals
6Input-output operators
- Past inputs to initial state class of initial
conditions possible to generate through chosen
forcing
- Initial state to future outputs possible outputs
from initial condition
- Past inputs to future outputs
7Most dangerous inputs, creating the largest
outputs
- Eigenmodes of Hankel operator balanced modes
8Controllability Gramian for GL-equation
- Correlation of actuator impulse response in
forward solution - POD modes
- Ranks states most easily influenced by input
- Provides a means to measure controllability
9Observability Gramian for GL-equation
Output
- Correlation of sensor impulse response in adjoint
solution - Adjoint POD modes
- Ranks states most easily sensed by output
- Provides a means to measure observability
10Controllability and Observability Gramians
- Correlation of actuator impulse response in
forward solution - POD modes
- Correlation of sensor impulse response in adjoint
solution - Adjoint POD modes
11Balanced modes eigenvalues of the Hankel
operator
- Combine snapshots of direct and adjoint
simulation - Expand modes in snapshots to obtain smaller
eigenvalue problem
12Snapshots of direct and adjoint solution in
Blasius flow
Direct simulation
Adjoint simulation
13Balanced modes for Blasius flow
adjoint
forward
14Properties of balanced modes
- Largest outputs possible to excite with chosen
forcing - Balanced modes diagonalize observability Gramian
- Adjoint balanced modes diagonalize
controllability Gramian - Ginzburg-Landau example revisited
15Model reduction
- Project dynamics on balanced modes using their
biorthogonal adjoints - Reduced representation of input-output relation,
useful in control design
16Impulse response
Disturbance Sensor
Actuator Objective
Disturbance Objective
DNS n105 ROM m50
17Frequency response
From all inputs to all outputs
DNS n105 ROM m80 m50 m2
18Optimal Feedback Control LQG
cost function
g (noise)
Ly
fKk
z
w
controller
Find an optimal control signal f (t) based
on the measurements y(t) such that in the
presence of external disturbances w(t) and
measurement noise g(t) the output z(t) is
minimized. ? Solution LQG/H2
19LQG controller formulation with DNS
- Apply in Navier-Stokes simulation
20Performance of controlled system
controller
Noise
Sensor
Actuator
Objective
21Performance of controlled system
Noise
Sensor
Actuator
Objective
22Conclusions
- Input-output formulation ideal for analysis and
design of feedback control systems - Balanced modes
- Obtained from snapshots of forward and adjoint
solutions - Give low order models preserving input-output
relationship between sensors and actuators - Feedback control of Blasius flow
- Reduced order models with balanced modes used in
LQG control - Controller based on small number of modes works
well in DNS
23(No Transcript)
24Message
- Need only snapshots from a Navier-Stokes solver
(with adjoint) to perform stability analysis and
control design for complex flows - Main example Blasius, others GL-equation, jet in
cross-flow
25Outline
- Introduction with input-output configuration
- Matrix-free methods using Navier-Stokes snapshots
- The initial value problem, global modes and
transient growth - Particular or forced solution and input-output
characteristics - Reduced order models preserving input-output
characteristics, balanced truncation - LQG feedback control based on reduced order model
- Conclusions
26Background
- Global modes and transient growth
- Ginzburg-Landau Cossu Chomaz (1997) Chomaz
(2005) - Waterfall problem Schmid Henningson (2002)
- Blasius boundary layer, Ehrenstein Gallaire
(2005) Åkervik et al. (2008) - Recirculation bubble Åkervik et al. (2007)
Marquet et al. (2008) - Matrix-free methods for stability properties
- Krylov-Arnoldi method Edwards et al. (1994)
- Stability backward facing step Barkley et al.
(2002) - Optimal growth for backward step and pulsatile
flow Barkley et al. (2008) - Model reduction and feedback control of fluid
systems - Balanced truncation Rowley (2005)
- Global modes for shallow cavity Åkervik et al.
(2007) - Ginzburg-Landau Bagheri et al. (2008)
- Invited session on Global Instability and
Control of Real Flows, Wednesday 8-12, Evergreen 4
27The forced problem input-output
- Ginzburg-Landau example
- Input-output for 2D Blasius configuration
- Model reduction
28Input-output analysis
- Inputs
- Disturbances roughness, free-stream turbulence,
acoustic waves - Actuation blowing/suction, wall motion, forcing
- Outputs
- Measurements of pressure, skin friction etc.
- Aim preserve dynamics of input-output
relationship in reduced order model used for
control design
29Feedback control
- LQG control design using reduced order model
- Blasius flow example
30LQG feedback control
cost function
Reduced model of real system/flow
Estimator/ Controller
31Riccati equations for control and estimation gains