Title: IIAS-2
1Tensor optimized shell model using bare
interaction for light nuclei
? ?? ?????? ??RCNP
????? ?? ? ??RCNP ?? ??
??
1
RCNP????????????????????? _at_RCNP 2008.12.23-25
2Outline
- Tensor Optimized Shell Model (TOSM)
- Unitary Correlation Operator Method (UCOM)
- TOSM UCOM with bare interaction
- Application of TOSM to Li isotopes
- Halo formation of 11Li
- TM, K.Kato, H.Toki, K.Ikeda,
PRC76(2007)024305 - TM, K.Kato, K.Ikeda,
PRC76(2007)054309 - TM, Sugimoto, Kato, Toki, Ikeda,
PTP117(2007)257 - TM. Y.Kikuchi, K.Kato, H.Toki, K.Ikeda,
PTP119(2008)561 - TM, H. Toki, K. Ikeda,
Submited to PTP
3Motivation for tensor force
- Tensor force (Vtensor) plays a significant role
in the nuclear structure. - In 4He,
- 80 (GFMC)
R.B. Wiringa, S.C. Pieper, J. Carlson, V.R.
Pandharipande, PRC62(2001)
- We would like to understand the role of Vtensor
in the nuclear structure by describing tensor
correlation explicitly.
- model wave function (shell model and cluster
model) - He, Li isotopes (LS splitting, halo formation,
level inversion)
- Structures of light nuclei with bare interaction
- tensor correlation short-range correlation
3
4Tensor Short-range correlations
- Tensor correlation in TOSM (long and
intermediate) -
- 2p2h mixing optimizing the particle states
(radial high-L)
- Short-range correlation
- Short-range repulsion in the bare NN force
- Unitary Correlation Operator Method (UCOM)
S
D
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61 T. Neff, H. Feldmeier,
NPA713(2003)311
4
4
5Property of the tensor force
Long and intermediate ranges
- Centrifugal potential (1GeV_at_0.5fm) pushes away
the L2 wave function.
5
6Tensor-optimized shell model (TOSM)
TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257
- Tensor correlation in the shell model type
approach. - Configuration mixingwithin 2p2h excitationswith
high-L orbit TM et al., PTP113(2005) TM et
al., PTP117(2007) T.Terasawa, PTP22(59)) - Length parameters such as
are determined independently and
variationally. - Describe high momentum component from Vtensor
CPP-HF by Sugimoto et al,(NPA740) / Akaishi
(NPA738)CPP-RMF by Ogawa et al.(PRC73), CPP-AMD
by Dote et al.(PTP115)
4He
6
6
7Hamiltonian and variational equations in TOSM
TM, Sugimoto, Kato, Toki, Ikeda, PTP117(07)257
- Effective interaction Akaishi force (NPA738)
- G-matrix from AV8 with kQ2.8 fm-1
- Long and intermediate ranges of Vtensor survive.
- Adjust Vcentral to reproduce B.E. and radius of
4He
7
84He in TOSM
vnn G-matrix
Shrink
Length parameters
Orbit bparticle/bhole
0p1/2 0.65
0p3/2 0.58
1s1/2 0.63
0d3/2 0.58
0d5/2 0.53
0f5/2 0.66
0f7/2 0.55
0 1 2 3 4 5 6
Lmax
Higher shell effect
good convergence
8
8
Cf. K. Shimizu, M. Ichimura and A. Arima,
NPA226(1973)282.
9Configuration of 4He in TOSM
Energy (MeV) ? 28.0
? 51.0
4 Gaussians instead of HO
(0s1/2)4 85.0
(0s1/2)2JT(0p1/2)2JT JT10 5.0
JT01 0.3
(0s1/2)210(1s1/2)(0d3/2)10 2.4
(0s1/2)210(0p3/2)(0f5/2)10 2.0
PD 9.6
c.m. excitation 0.6 MeV
- 0? of pion nature.
- deuteron correlation with (J,T)(1,0)
Cf. R.Schiavilla et al. (GFMC)
PRL98(07)132501
9
10Tensor Short-range correlations
- Tensor correlation in TOSM (long and
intermediate) -
- 2p2h mixing optimizing the particle states
(radial high-L)
- Short-range correlation
- Short-range repulsion in the bare NN force
- Unitary Correlation Operator Method (UCOM)
S
D
TOSMUCOM
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61 T. Neff, H. Feldmeier
NPA713(2003)311
10
10
11Unitary Correlation Operator Method
TOSM
short-range correlator
Bare Hamiltonian
Shift operator depending on the relative distance
r
2-body cluster expansion of Hamiltonian
H. Feldmeier, T. Neff, R. Roth, J. Schnack,
NPA632(1998)61
11
11
12Short-range correlator C (or Cr)
1E
Original?r2
3GeV repulsion
3E
Vc
1O
?C
3O
AV8 CentralLSTensor
12
134He in UCOM (Afnan-Tang, Vc only)
?C
13
13
144He with AV8 in TOSMUCOM
AV8 Central LSTensor
exact
Kamada et al. PRC64 (Jacobi)
- Gaussian expansion for particle states (6
Gaussians) - Two-body cluster expansion of Hamiltonian
14
15Extension of UCOM S-wave UCOM
for only relative S-wave wave function
minimal effect of UCOM
SD coupling
5 MeV gain
15
15
16Different effects of correlation function
S
No Centrifugal Barrier
Short-range repulsion
D
due to Centrifugal Barrier
16
16
17Saturation of 4He in UCOM
UCOM short-range tensor
T. Neff, H. Feldmeier NPA713(2003)311
Short tensor
Energy
TOSMUCOM
Long tensor
Benchmark cal. Kamada et al. PRC64
17
184He in TOSM S-wave UCOM
T
(exact)
Kamada et al. PRC64 (Jacobi)
Remaining effect 3-body cluster term
in UCOM
VLS
E
VC
VT
18
19Summary
- Tensor and short-range correlations
- Tensor-optimized shell model (TOSM)
- He Li isotopes (LS splitting, Halo formation)
- Unitary Correlation Operator Method (UCOM)
- Extended UCOM S-wave UCOM
- In TOSMUCOM, we can study the nuclear structure
starting from the bare interaction. - Spectroscopy of light nuclei (p-shell, sd-shell)
19
19
20Pion exchange interaction vs. Vtensor
Involve large momentum
Delta interaction
Tensor operator
Yukawa interaction
- Vtensor produces the high momentum component.
20
21Characteristics of Li-isotopes
Halo structure
- Breaking of magicity N8
- 10-11Li, 11-12Be
- 11Li (1s)2 50. (Expt by Simon et
al.,PRL83) - Mechanism is unclear
11Li
21
22Pairing-blocking K.Kato,T.Yamada,K.Ikeda,PTP1
01(99)119, Masui,S.Aoyama,TM,K.Kato,K.Ikeda,NPA
673('00)207. TM,S.Aoyama,K.Kato,K.Ikeda,PTP10
8('02)133, H.Sagawa,B.A.Brown,H.Esbensen,PLB3
09('93)1.
22
2311Li in coupled 9Linn model
- System is solved based on RGM
TOSM
- Orthogonality Condition Model (OCM) is applied.
23
2411Li G.S. properties (S2n0.31 MeV)
Rm
Simon et al.
P(s2)
Tensor Pairing
E(s2)-E(p2) 2.1 1.4 0.5 -0.1 MeV
Pairing correlation couples (0p)2 and (1s)2 for
last 2n
252n correlation density in 11Li
s24
s247
9Li
9Li
n
n
Di-neutron type config.
Cigar type config.
H.Esbensen and G.F.Bertsch, NPA542(1992)310
25
K. Hagino and H. Sagawa, PRC72(2005)044321
26Short-range correlator C (or Cr)
Hamiltonian in UCOM
2-body approximation in the cluster expansion of
operator
27LS splitting in 5He with tensor corr.
- T. Terasawa,PTP22(59)
- S. Nagata, T. Sasakawa, T. Sawada R. Tamagaki,
PTP22(59) - K. Ando, H. Bando PTP66(81)
- TM, K.Kato, K.Ikeda PTP113(05)
- Orthogonarity Condition Model (OCM) is applied.
27
28Phase shifts of 4He-n scattering
28
296He in coupled 4Henn model
- System is solved based on RGM
TOSM
- Orthogonality Condition Model (OCM) is applied.
29
30Tensor correlation in 6He
Ground state
Excited state
TM, K. Kato, K. Ikeda, J. Phys. G31 (2005) S1681
30
30
316He results in coupled 4Henn model
Theory With Tensor
complex scaling for resonances
- (0p3/2)2 can be described in Naive 4Henn model
- (0p1/2)2 loses the energy
Tensor suppression in 02
31
31