MIKKEL THORUP - PowerPoint PPT Presentation

About This Presentation
Title:

MIKKEL THORUP

Description:

Title: Undirected Single-Source Shortest Paths with Positive Integer Weights in Linear Time Author: brynn Last modified by: shr Created Date: 5/4/2004 5:32:34 AM – PowerPoint PPT presentation

Number of Views:68
Avg rating:3.0/5.0
Slides: 46
Provided by: Bry56
Category:

less

Transcript and Presenter's Notes

Title: MIKKEL THORUP


1
Undirected Single-Source Shortest Paths with
Positive Integer Weights in Linear Time
  • MIKKEL THORUP
  • 1999 Journal of the ACM

2
Presenters
  • ??? ???
  • ??? ???
  • ??? ???

3
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

4
Introduction(1)
  • Mikkel Thorup
  • http//www.diku.dk/mthorup/

5
Introduction(2)
P
S
S
S
ingle
ath
hortest
ource
Shortest path
problem
Shortest path
S
Shortest path
  • Given a positively weighted graph G with a source
    vertex s,
  • find the shortest path from s to all other
    vertices in the graph

6
Introduction(3)History
  • Since 1959, all developments in SSSP have been
    based on Dijkstras algorithm (1959)

7
Dijkstras algorithm(1)
D(v)
  • Notation
  • G (V, E)
  • v n , E m
  • weighted function l edge ? positive integer
  • If (v, w) E , define l(v, w) 8
  • d(v) distance from s to v
  • D(v) super distance
  • D(v) ? d(v)

a set S V v S D(v)
d(v) v S D(v) min
d(u) l(u, v)
u S
v can go to S
D(v) super distance
v can go to S
8
Dijkstras algorithm(2)
V

v8
v4
v6
v7
v8
v1
v4
v7
v1
v2
v3
v5
v3
v2
v5
v6
min
v3
v1
v2
0
7
0
8
7
4

4
S
v5
8
6
6
v4
visit
v6
v3
Initially
v8
8
8
7
7
7
v6
v5
v4
v7
min
v2
v1
5
8
5
6
6
v7
v8
Increasing order
9
Introduction(3)History

Thorups priority queue (1996)
Raman (1996)
Fredman Willards fusion trees
(1993)
Fredman Tarjan Fibonacci heaps
(1987)
Fredman Willards atmoic heaps
(1994)
Applying Williams heap
(1964)
Simple
O(m)
our target !!
Dijkstras algorithm (1959)
10
Introduction(4)
  • In fact, Dijkstras algorithm can be
    implemented in linear time ?
  • ( Fredman Tarjan 1987 , Thorup 1996 )

linear time sorting
Since we do not know how to sort in linear time,
this implies that we are deviating from
Dijkstras algorithm in that we do not visit the
vertices in order of increasing distance from s.
Our algorithm is based on a hierarchical
bucketing structure. ? may visit the vertices
in any order
11
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

12
Preliminary(1)
  • Lemma 1
  • If v S\V minimize D(v) , D(v) d(v)
  • Lemma 2
  • minD(V\S) mind(V\s) is non-decreasing

13
Preliminary(2)
  • Notation
  • x gtgt i
  • is x / 2
  • If x ? y gt x gtgt i ? y gtgt i
  • If W V , minD(W) gtgt i
  • is (min D(w) w W ) gtgt i

i
14
Preliminary(3)
  • Bucket
  • which elements can be inserted and deleted,and
    from which we can pick out an unspecified
    element.
  • each operation should be supported in constant
    time.

15
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

16
Avoiding the Sorting Bottleneck(1)
  • Dijkstras algorithm
  • visit the vertices in order of increasing D(v)
  • New approach
  • visit the vertices where D(v) d(v)
  • D(v) ? min D(V\S)

17
Avoiding the Sorting Bottleneck(2)
  • For some i, v Vi\S,D(v) min D(Vi\S)? min
    D(V\S) d
  • d(v) D(v)


d
18
Avoiding the Sorting Bottleneck(3)
  • Criteria on D(v) d(v)
  • D(v) min D(Vi\S) ? min D(V\S) d
  • lt min D(Vi\S) ? min D(V\S) 2a
  • lt min D(Vi\S) gtgt a ? min D(V\S) gtgt a
  • Bucketing structure

i
j
D(v) ? Se l(e) ? Se l(e) gtgt a
19
Avoiding the Sorting Bottleneck(4)
  • SSSP algorithm A

d 20 , a 0
4
min D(V\S) min d(V\S) is nondecreasing
0
8
8
4
7
B(min D(Vi\S) gtgt a) i
8
6
8
8

1
2
3
2

0
5
8
1
2
3
4
6
7
8
5
5
8
20
Avoiding the Sorting Bottleneck(5)
  • SSSP algorithm A

? Se l(e) gtgt a d 2a
O(m ?) cost of maintaining min D(Vi\S) for
each i
21
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

22
The Component Hierarchy(1)
  • Definition
  • Githe subgraph of G with l(e) lt 2i
  • vithe connected component on level i
    containing v
  • children of viwi-1, w vi

v
v2
v1
w1
v
w
Go
G1
G2
G3 G
23
The Component Hierarchy(2)
  • Definition
  • vi is a min-child of vi1 if min D(vi-) gtgt
    i min D(vi1-) gtgt i
  • vi is minimal if vj is a min-child of vj1
    for j i, , b-1

24
The Component Hierarchy(3)
Dijkstras algorithm
visit v, if v V\S minimizes D(v)
i, min D(vi-) gtgt i D(vi1-) gtgt i D(v) gtgt
i gt v0 minimal
minimal D(v) d(v) v0 minimal
D(v) d(v) v0 minimal
25
The Component Hierarchy(4)
lemma 8 If v S and vi is minimal, min
D(vi-) min d(vi-). In particular, D(v)
d(v) if v0 v is minimal.
26
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

27
Visiting Minimal Vertices(1)
  • Definition
  • visiting a vertex requires that v0 v is
    minimal
  • when v is visited, v is moved to S and relax
  • Lemma 10
  • For all vi, max d(vi\vi-) gtgt i-1 ? min
    d(vi-) gtgt i-1
  • Lemma 11
  • min D(vi-) gtgt i min d(vi-) gtgt i, visiting w
    changes min D(vi-) gtgt i, and the change in min
    D(vi-) gtgt i is increased by one

28
Visiting Minimal Vertices(2)
  • Lemma 12, 13
  • If vi has once been minimal, in all future,min
    D(vi-) gtgt i min d(vi-) gtgt i

29
Visiting Minimal Vertices(3)
  • SSSP algorithm B,C

wi minimal
Visit(si)
s
8
4
4
0
d(w) gtgt i min D(si-) gtgt i
min D(wi-1-) gtgt i - 1 min D(si-) gtgt i - 1
8
Visit(wi-1)
8
8
s0, i 0
s3 G, i 3
s2, i 2
s1, i 1
8
5
30
Visiting Minimal Vertices(4)
Towards Linear Time !!
31
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

32
Towards Linear Time(1)
  • Component tree

Number of nodes
1
1
b
c
a
3
2
3
1
d
e
2
1
3
2
f
c
a
b
d
f
e
33
Towards Linear Time(2)
  • Linear size bucket structure

i
j
? Se l(e) gtgt a
34
Towards Linear Time(3)
  • Lemma 18. The total number of relevant buckets is
    lt 4m 4n
  • Diameter of vI is bounded by
  • gt
  • Define
  • gt

35
Towards Linear Time(4)
  • Lemma 18. The total number of relevant buckets is
    lt 4m 4n

36
Towards Linear Time(5)
37
Towards Linear Time(6)
38
Towards Linear Time(7)
39
Towards Linear Time(8)
0 0 0 0
0 0
40
Towards Linear Time(9)
Total O(m)
Total O(m)
Total O(n)
Total O(m)
41
Towards Linear Time(10)
  • Assume that the component tree has been
    computed in linear time. Then no more than O(m)
    time and space is needed to solve the SSSP
    problem
  • How to construct the component tree ?

42
Outline
  • Introduction
  • Preliminary
  • Avoiding the Sorting Bottleneck
  • The Component Hierarchy
  • Visiting Minimal Vertices
  • Towards Linear Time
  • The Component Tree

43
The Component Tree(1)
44
The Component Tree(2)
  • Use union-find operation
  • Let e1, , en-1 be the edges of M sorted
    according to

45
The Component Tree(3)
v1
v3
v2
v1,v2,v3,v4,v5,v6,v7,v8
4
3
2
v4,v5,v6,v7,v8
v3,
v2,
v4
4
5
1
1
v4,v5
v7,v8
,v6
v5
v6
1
2
2
1
v1
v2
v3
v4
v5
v6
v7
v8
v7
v8
Write a Comment
User Comments (0)
About PowerShow.com