Title: Introduction to Pneumatics
1Introduction to Pneumatics
2Air Production System
Air Consumption System
3What can Pneumatics do?
- Operation of system valves for air, water or
chemicals - Operation of heavy or hot doors
- Unloading of hoppers in building, steel making,
mining and chemical industries - Ramming and tamping in concrete and asphalt
laying - Lifting and moving in slab molding machines
- Crop spraying and operation of other tractor
equipment - Spray painting
- Holding and moving in wood working and furniture
making - Holding in jigs and fixtures in assembly
machinery and machine tools - Holding for gluing, heat sealing or welding
plastics - Holding for brazing or welding
- Forming operations of bending, drawing and
flattening - Spot welding machines
- Riveting
- Operation of guillotine blades
- Bottling and filling machines
- Wood working machinery drives and feeds
- Test rigs
- Machine tool, work or tool feeding
4Properties of compressed air
- Availability
- Storage
- Simplicity of design and control
- Choice of movement
- Economy
5Properties of compressed air
- Reliability
- Resistance to Environment
- Environmentally clean.
- Safety
6What is Air?
The weight of a one square inch column of
air (from sea level to the outer atmosphere, _at_
680 F, 36 RH) is 14.69 pounds.
In a typical cubic foot of air --- there are
over 3,000,000 particles of dust, dirt, pollen,
and other contaminants. Industrial air may be 3
times (or more) more polluted.
7HUMIDITY DEWPOINT
8Pressure and Flow
Example P1 6bar ? P 1bar P2 5bar Q 54
l/min (1 Bar 14.5 psi)
P1
P2
9Air Treatment
10Compressing Air
11Relative Humidity
Reservoir Tank
Adsorbtion Dryer
Compressor Exit
Airline Drop
12Air Mains
Dead-End Main
Ring Main
13Pressure
- It should be noted that the SI unit of pressure
is the Pascal (Pa) - 1 Pa 1 N/m2 (Newton per square meter)
- This unit is extremely small and so, to avoid
huge numbers in practice, an agreement has been
made to use the bar as a unit of 100,000 Pa. - 100,000 Pa 100 kPa 1 bar
- Atmospheric Pressure
- 14.696 psi 1.01325 bar 1.03323 kgf/cm2.
14Isothermic change (Boyles Law)with constant
temperature, the pressure of a given mass of gas
is inversely proportional to its volume
- P1 x V1 P2 x V2
- P2 P1 x V1 V2
- V2 P1 x V1 P2
- Example P2 ?
- P1 Pa (1.013bar)
- V1 1m³
- V2 .5m³
- P2 1.013 x 1 .5
- 2.026 bar
15Isobaric change (Charles Law)at constant
pressure, a given mass of gas increases in volume
by 1 of its volume for every degree C in
temperature rise. 273
- V1 T1
- V2 T2
- V2 V1 x T2 T1
- T2 T1 x V2 V1
- Example V2 ?
- V1 2m³
- T1 273K (0C)
- T2 303K (30C)
- V2 2 x 303 273
- 2.219m³
10
16Isochoric change Law of Gay Lussac at constant
volume, the pressure is proportional to the
temperature
- P1 x P2 T1 x T2
- P2 P1 x T2 T1
- T2 T1 x P2 P1
- Example P2 ?
- P1 4bar
- T1 273K (OC)
- T2 298K (25C)
- P2 4 x 298 273
- 4.366bar
17P1 ________bar T1 _______C ______K T2
_______C ______K
18(No Transcript)
19Force formula transposed
- Example
- FE 1600N
- P 6 bar.
- D 4 x 1600 3.14 x 600,000
- D 6400 1884000
- D .0583m
- D 58.3mm
- A 63mm bore cylinder would be selected.
20Load Ratio
- This ratio expresses the percentage of the
required force needed from the maximum available
theoretical force at a given pressure. - L.R. required force x 100
max. available theoretical force - Maximum load ratios
- Horizontal.70 1.51
- Vertical.50 2.01
21(No Transcript)
22Speed control
- The speed of a cylinder is define by the extra
force behind the piston, above the force opposed
by the load - The lower the load ratio, the better the speed
control.
23Angle of Movement
1. If we totally neglect friction, which cylinder
diameter is needed to horizontally push a load
with an 825 kg mass with a pressure of 6 bar
speed is not important. 2. Which cylinder
diameter is necessary to lift the same mass with
the same pressure of 6 bar vertically if the load
ratio can not exceed 50. 3. Same conditions
as in 2 except from vertical to an angle of 30.
Assume a friction coefficient of 0.2. 4. What is
the force required when the angle is increased to
45?
24Y axes, (vertical lifting force).. sin? x M X
axes, (horizontal lifting force).cos? x ? x
M Total force Y X ? friction coefficients
25Example
? .01
F ________ (N)
150kg
40?
Force Y sin ? x M .642 x 150
96.3 N Force X cos ? x ? x M .766 x .01
x 150 1.149 N Total Force Y X
96.3 N 1.149 N 97.449 N
26? __
______kg
_____?
Force Y sin ? x M Force X cos ? x ? x
M Total Force Y X
F ________ (N)
2713
28Relative humidity (r.h.) actual water content
X 100
saturated quantity (dew point)
- Example 1
- T 25C
- r.h 65
- V 1m³
- From table 3.7 air at 25C contains 23.76 g/m³
- 23.76 g/m³ x .65 r.h 15.44 g/m³
13
29Relative Humidity Example 2
- V 10m³
- T1 15C
- T2 25C
- P1 1.013bar
- P2 6bar
- r.h 65
- ? H²0 will condense out
- From 3.17, 15C 13.04 g/m²
- 13.04 g/m² x 10m³ 130.4 g
- 130.4 g x .65 r.h 84.9 g
- V2 1.013 x 10 1.44 m³ 6 1.013
- From 3.17, 25C 23.76 g/m²
- 23.76 g/m² x 1.44 m³ 34.2 g
- 84.9 - 34.2 50.6 g
- 50.6 g of water will condense out
13
30V __________m³ T1 __________C T2
__________C P1 __________bar P2
__________bar r.h __________ ?
__________H²0 will condense out
31Formulae, for when more exact values are required
- Sonic flow P1 1.013 gt 1.896 x (P2 1,013)
- Pneumatic systems cannot operate under sonic flow
conditions - Subsonic flow P1 1.013 lt 1.896 x (P2
1,013) - The Volume flow Q for subsonic flow equals
- Q (l/min) 22.2 x S (P2 1.013) x ? P
16
32Sonic / Subsonic flow
- Example
- P1 7bar
- P2 6.3bar
- S 12mm²
- l/min
- P1 1.013 ? 1.896 x (P2 1.013)
- 7 1.013 ? 1.896 x (6.3 1.013)
- 8.013 ? 1.896 x 7.313
- 8.013 lt 13.86 subsonic flow.
- Q 22.2 x S x (P2 1.013) x ?P
- Q 22.2 x 12 x (6.3 1.013) x .7
- Q 22.2 x 12 x 7.313 x .7
- Q 22.2 x 12 x 5.119
- Q 22.2 x 12 x 2.26
- Q 602 l/min
16,17
33P1 _________bar P2 _________bar S
_________mm² Q ____?_____l/min
34Receiver sizing
- If
- Q 5000
- P1 9 bar
- Pa 1.013
- V 5000 x 1.013 9 1.013
- V 5065 10.013
- V 505.84 liters
- Example
- V capacity of receiver
- Q compressor output l/min
- Pa atmospheric pressure
- P1 compressor output pressure
- V Q x Pa P1 Pa
22
3529
3629
3730
38Sizing compressor air mains
- Example
- Q 16800 l/min
- P1 9 bar (900kPa)
- ?P .3 bar (30kPa)
- L 125 m pipe length
- ?P kPa/m L
- l/min x .00001667 m³/s
- 30 .24 kPa/m 125
- 16800 x .00001667 0.28 m³/s
- chart lines on Nomogram
31
3933
4034
41Sizing compressor air mains
- Example 2
- Add fittings to example 1
- From table 4.20
- 2 elbows _at_ 1.4m 2.8m
- 2 90 _at_ 0.8m 1.6m
- 6 Tees _at_ 0.7m 4.2m
- 2 valves _at_ 0.5m 1.0m
- Total 9.6m
- 125m 9.6 134.6m
- 135m
- 30kPa 0.22kPa/m 135m
- Chart lines on Nomogram
31
4233
43Using the ring main example on page 29 size for
the following requirements
Q 20,000 l/min P1 10 bar (_________kPa) ?P
.5 bar (_________kPa) L 200 m pipe
length ?P kPa/m L l/min x .00001667 m³/s
4439
45Example
- P 7 bar (700,000 N/m²)
- D 63mm (.063m)
- d 15mm (.015m)
- F ? x (D² -d²) x P 4
- F 3.14 x (.063² - .015²) x 700,000 4
- F 3.14 x (.003969 - .0.000225) x 700,000 4
- F .785 x .003744 x 700,000
- F 2057.328 N
54
46(No Transcript)
47Example
- Calculate remaining force
- 401.9 x 48.8 (.488) 196N 100
- assume a cylinder efficiency of 95
- 196 x 95 185.7 N 100
- Newtons kg m/s² , therefor
- 185.7 N 185.7 kg m/s²
- divide mass into remaining force
- m/s² 185.7 kg m/s²
100kg - 1.857 m/s²
- M 100kg
- P 5bar
- ? 32mm
- ? 0.2
- F ?/4 x D²x P 401.9 N
- From chart 6.16
- 90KG 43.9 Lo.
- To find Lo for 100kg
- 43.9 x 100 48.8 Lo. 90
48M _______kg P _______bar ? _______mm ?
0.2 F ?/4 x D²x P 401.9 N
49Air Flow and ConsumptionAir consumption of a
cylinder is defined aspiston area x stroke
length x number of single strokes per minute x
absolute pressure in bar.
Q D² (m) x ? x (P Pa) x stroke(m) x
strokes/min x 1000 4
50- Example.
- ? 80
- stroke 400mm
- s/min 12 x 2
- P 6bar.
- From table 6.19... ?80 at 6 bar 3.479
(3.5)l/100mm stroke - Qt Q x stroke(mm) x of extend
retract strokes 100 - Qt 3.5 x 400 x 24 100
- Qt 3.5 x 4 x 24
- Qt 336 l/min.
51Peak Flow
- For sizing the valve of an individual cylinder
we need to calculate Peak flow. The peak flow
depends on the cylinders highest possible speed.
The peak flow of all simultaneously moving
cylinders defines the flow to which the FRL has
to be sized. - To compensate for adiabatic change, the
theoretical volume flow has to be multiplied by a
factor of 1.4. This represents a fair average
confirmed in a high number of practical tests.
Q 1.4 x D² (m) x ? x (P Pa) x stroke(m) x
strokes/min x 1000 4
52- Example.
- ? 80
- stroke 400mm
- s/min 12 x 2
- P 6bar
- From table 6.20... ?80 at 6 bar 4.87
(4.9)l/100mm stroke - Qt Q x stroke(mm) x of extend
retract strokes 100 - Qt 4.9 x 400 x 24 100
- Qt 4.9 x 4 x 24
- Qt 470.4 l/min.
53Formulae comparison
- Q 1.4 x D² (m) x ? x (P Pa) x stroke(m) x
strokes/min x 1000 4 - Q 1.4 x .08² x .785 x ( 6 1.013) x .4 x
24 x 1000 - Q 1.4 x .0064 x .785 x 7.013 x .4 x 24 x
1000 - Q 473.54
54Q 1.4 x D² (m) x ? x (P Pa) x stroke(m) x
strokes/min x 1000 4
? _______mm stroke _______mm s/min
_______ x 2 P _______bar
55Inertia
- Example 1
- m 10kg
- a 30mm
- j ___?
- J m (kg) x a² (m) 12
- J 10 x .03² 12
- J 10 x .0009 12
- J .00075
a
56Inertia
- J ma x a² mb x b²
3 3 - J 3 x .01² 6 x .02²
3 3 - J 3 x .0001 6 x .0004
3 3 - J .0001 .0008
- J .0009
- Example 2
- m 9 kg
- a 10mm
- b 20mm
- J ___?
a b
57m ________ kg a _________mm b
_________mm J _________?
a b
58Valve identification
A(4) B(2)
EA P EB (5) (1) (3)
59Valve Sizing
- The Cv factor of 1 is a flow capacity of one US
Gallon of water per minute, with a pressure drop
of 1 psi. - The kv factor of 1 is a flow capacity of one
liter of water per minute with a pressure drop of
1 bar. - The equivalent Flow Section S of a valve is the
flow section in mm2 of an orifice in a diaphragm,
creating the same relationship between pressure
and flow.
60Q 400 x Cv x (P2 1.013) x ?P x
273 273 ? Q 27.94 x kv x (P2
1.013) x ?P x 273 273 ? Q
22.2 x S x (P2 1.013) x ?P x
273 273 ?
61Flow example
- Q 22.2 x S x (P2 1.013) x ?P x 273
273 ? - Q 22.2 x 35 x (5.5 1.013) x .5 x
273 273 25 - Q 22.2 x 35 x 6.613 x .5 x 273
298 - Q 22.2 x 35 x 6.613 x .5 x 273
298 - Q 22.2 x 35 x 1.89 x .957
- Q 1405.383
- S 35
- P1 6 bar
- P2 5.5 bar
- ? 25C
62Cv ________between 1 -5 P1
________bar P2 ________5 bar ?
________C
63Flow capacity formulae transposed
- Cv Q 400 x (P2 1.013) x ?P
- Kv Q 27.94 x (P2 1.013) x
?P - S Q 22.2 x (P2 1.013) x ?P
-
64Flow capacity example
- Q 750 l/min
- P1 9 bar
- ?P 10
- S ?
- S Q 22.2 x (P2 1.013) x ?P
- S 750 22.2 x (8.1 1.013) x .9
- S 750 22.2 x 9.113 x .9
- S 750 22.2 x 2.86
- S 750 S 11.81 63.49
65Q _________ l/min P1 _________ bar ?P
_________ Cv _________ ?
66Orifices in a series connection
- S total 1 1 1 1
S1² S2² S3² - Example
- S1 12mm²
- S2 18mm²
- S3 22mm²
S total 1 1 1 1
12² 18² 22² S total
1 1 1 1 144 324
484 S total 1 1
.00694 .00309 .00207 .0121 S total
9.09
67Cv _________ Cv _________ Cv
_________ Cv total ________
68(No Transcript)
69(No Transcript)
70Table 7.31 Equivalent Section S in mm2 for the
valve and the tubing, for 6 bar working pressure
and a pressure drop of 1 bar (Qn Conditions)
71Flow Amplification
72Signal Inversion
73Selection
74Memory Function
75Delayed switching on
76Delayed switching off
77Pulse on switching on
78Pulse on releasing a valve
79Direct Operation and Speed Control
80Control from two points OR Function
81Safety interlock AND Function
82Safety interlock AND Function
3
2
1
83Inverse Operation NOT Function
84Direct Control
85Holding the end positions
86Semi Automatic return of a cylinder
87Repeating Strokes
88Sequence Control
89(No Transcript)
90(No Transcript)
91(No Transcript)
92(No Transcript)
93(No Transcript)
94(No Transcript)
95(No Transcript)