Tools for - PowerPoint PPT Presentation

1 / 27
About This Presentation
Title:

Tools for

Description:

Part II Tools for Knowledge Discovery Knowledge Discovery in Databases Chapter 5 5.1 A KDD Process Model Step 1: Goal Identification Define the Problem. – PowerPoint PPT presentation

Number of Views:32
Avg rating:3.0/5.0
Slides: 28
Provided by: iim55
Category:
Tags: image | mining | tools

less

Transcript and Presenter's Notes

Title: Tools for


1
Part II
  • Tools for
  • Knowledge Discovery

2
Knowledge Discovery in Databases
  • Chapter 5

3
5.1 A KDD Process Model
4
(No Transcript)
5
(No Transcript)
6
Step 1 Goal Identification
  • Define the Problem.
  • Choose a Data Mining Tool.
  • Estimate Project Cost.
  • Estimate Project Completion Time.
  • Address Legal Issues.
  • Develop a Maintenance Plan.

7
Step 2 Creating a Target Dataset
8
(No Transcript)
9
Step 3 Data Preprocessing
  • Noisy Data
  • Missing Data

10
Noisy Data
  • Locate Duplicate Records.
  • Locate Incorrect Attribute Values.
  • Smooth Data.

11
Preprocessing Missing Data
  • Discard Records With Missing Values.
  • Replace Missing Real-valued Items With the
    Class Mean.
  • Replace Missing Values With Values Found Within
    Highly Similar Instances.

12
Processing Missing Data While Learning
  • Ignore Missing Values.
  • Treat Missing Values As Equal Compares.
  • Treat Missing values As Unequal Compares.

13
Step 4 Data Transformation
  • Data Normalization
  • Data Type Conversion
  • Attribute and Instance Selection

14
Data Normalization
  • Decimal Scaling
  • Min-Max Normalization
  • Normalization using Z-scores
  • Logarithmic Normalization

15
Attribute and Instance Selection
  • Eliminating Attributes
  • Creating Attributes
  • Instance Selection

16
(No Transcript)
17
Step 5 Data Mining
  1. Choose training and test data.
  2. Designate a set of input attributes.
  3. If learning is supervised, choose one or more
    output attributes.
  4. Select learning parameter values.
  5. Invoke the data mining tool.

18
Step 6 Interpretation and Evaluation
  • Statistical analysis.
  • Heuristic analysis.
  • Experimental analysis.
  • Human analysis.

19
Step 7 Taking Action
  • Create a report.
  • Relocate retail items.
  • Mail promotional information.
  • Detect fraud.
  • Fund new research.

20
5.9 The Crisp-DM Process Model
  1. Business understanding
  2. Data understanding
  3. Data preparation
  4. Modeling
  5. Evaluation
  6. Deployment

21
5.10 Experimenting with ESX
22
A Four-Step Model for Knowledge Discovery
  1. Identify the goal.
  2. Prepare the data.
  3. Apply data mining.
  4. Interpret and evaluate the results.

23
Experiment 1 Attribute Evaluation
  • Applying the Four-Step Process Model to the
    Credit Screening Dataset

24
(No Transcript)
25
(No Transcript)
26
Experiment 2 Parameter Evaluation
  • Applying the Four-Step Process Model to the
    Satellite Image Dataset

27
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com