?????????????? Physical Fluctuomatics ?9? ????? 9th Belief propagation - PowerPoint PPT Presentation

1 / 33
About This Presentation
Title:

?????????????? Physical Fluctuomatics ?9? ????? 9th Belief propagation

Description:

Title: Author: kazu Last modified by: kazukazu Created Date: 2/7/2002 5:12:47 AM Document presentation format – PowerPoint PPT presentation

Number of Views:72
Avg rating:3.0/5.0
Slides: 34
Provided by: kazu7
Category:

less

Transcript and Presenter's Notes

Title: ?????????????? Physical Fluctuomatics ?9? ????? 9th Belief propagation


1
??????????????Physical Fluctuomatics?9?
?????9th Belief propagation
  • ???? ?????????? ????????
  • ?? ??(Kazuyuki Tanaka)
  • kazu_at_smapip.is.tohoku.ac.jp
  • http//www.smapip.is.tohoku.ac.jp/kazu/

2
???????????
?????????????????????,?8?,????,2006.
????
J. Pearl Probabilistic Reasoning in Intelligent
Systems Networks of Plausible Inference, Morgan
Kaufmann, 1988. ???, ????, ???, ????, ????
???????????/???? I ---??????????, ????, 2003.
3
????????????
  • 2L ????????????

????????? L10??????1???????? L20???17?, L30???1
2?, L40???34????.
???????????????????????.
L ????
  • ?????????????
  • ?????

??
??
4
???????????
???????????
??????
?????
???????
????? (Belief Propagation)
J. Pearl Probabilistic Reasoning in Intelligent
Systems Networks of Plausible Inference (Morgan
Kaufmann, 1988). C. Berrou and A. Glavieux Near
optimum error correcting coding and decoding
Turbo-codes, IEEE Trans. Comm., 44 (1996).
5
?????????
  • ??????????????????
  • Y. Kabashima and D. Saad, Belief propagation vs.
    TAP for decoding
  • corrupted messages, Europhys. Lett. 44 (1998).
  • M. Opper and D. Saad (eds), Advanced Mean Field
    Methods
  • ---Theory and Practice (MIT Press, 2001).
  • ??????????????
  • S. Yedidia, W. T. Freeman and Y. Weiss
    Constructing free-energy
  • approximations and generalized belief propagation
    algorithms,
  • IEEE Transactions on Information Theory, 51
    (2005).
  • ?????????????
  • S. Ikeda, T. Tanaka and S. Amari Stochastic
    reasoning, free energy,
  • and information geometry, Neural Computation, 16
    (2004).

6
?????????????????
  • ???????????
  • J. S. Yedidia, W. T. Freeman and Y. Weiss
    Constructing free-energy approximations and
    generalized belief propagation algorithms, IEEE
    Transactions on Information Theory, 51 (2005).
  • ???????????????????????????
  • R. Kikuchi A theory of cooperative phenomena,
    Phys. Rev., 81 (1951).
  • T. Morita Cluster variation method of
    cooperative phenomena and its generalization I,
    J. Phys. Soc. Jpn, 12 (1957).

7
????????????????
??????????????????????????????????.
??????????????????????????????????????????????????
????????????(Yedidia, Weiss and Freeman,
NIPS2000).
?????
????? (???) ??????????
???????? (????)
???????????
8
????????????????
  • Image Processing
  • K. Tanaka Statistical-mechanical approach to
    image processing (Topical Review), J. Phys. A, 35
    (2002).
  • A. S. Willsky Multiresolution Markov Models for
    Signal and Image Processing, Proceedings of IEEE,
    90 (2002).
  • Low Density Parity Check Codes
  • Y. Kabashima and D. Saad Statistical mechanics
    of low-density parity-check codes (Topical
    Review), J. Phys. A, 37 (2004).
  • S. Ikeda, T. Tanaka and S. Amari Information
    geometry of turbo and low-density parity-check
    codes, IEEE Transactions on Information Theory,
    50 (2004).
  • CDMA Multiuser Detection Algorithm
  • Y. Kabashima A CDMA multiuser detection
    algorithm on the basis of belief propagation, J.
    Phys. A, 36 (2003).
  • T. Tanaka and M. Okada Approximate Belief
    propagation, density evolution, and statistical
    neurodynamics for CDMA multiuser detection, IEEE
    Transactions on Information Theory, 51 (2005).
  • Satisfability Problem
  • O. C. Martin, R. Monasson, R. Zecchina
    Statistical mechanics methods and phase
    transitions in optimization problems, Theoretical
    Computer Science, 265 (2001).
  • M. Mezard, G. Parisi, R. Zecchina Analytic and
    algorithmic solution of random satisfability
    problems, Science, 297 (2002).

9
?????????????????????
????????????????????????.
  • ????????????
  • ?????????????????????? ?????????????????????.
  • ? ????????????????
  • ?????????

10
????? (Belief Propagation)
  • ???????????????

?????????????????.
x
  • ???????????????

?????????????????.
x
11
????? (Belief Propagation)
???????????????
12
????? (Belief Propagation)
???????????????
13
???????????????
???1?2???????? ????????????????????????????????.
14
????? (Belief Propagation)
???????????????
???1???????2???????????(???2???)???1???????????1??
??????????????????.
??????????????? (Message Passing Rule)
15
??????????(1)
  • 1???

16
??????????(2)
??????
  • ???

17
???????????????
??????????!!
??????2?????
18
?????
???????????????
B??????????
19
???????????????
???????????????????????????????????????. ???,?????
????????????????
3
1
4
5
???????????????
20
??????????
??????
??????????????????,?????????????????.
???
21
????????????(1)
Kullback-Leibler Divergence
Free Energy
22
????????????(2)
Free Energy
KL Divergence
23
????????????(3)
Free Energy
KL Divergence
Bethe Free Energy
24
????????????(4)
25
????????????(5)
Lagrange Multipliers to ensure the constraints
26
????????????(6)
Extremum Condition
27
????????????(7)
Extremum Condition
28
????????????(8)
Message Update Rule
29
????????????(9)
Message Passing Rule of Belief Propagation

????????????????????????.
30
???????????????
  1. ?????(?????)
  2. ?????
  3. ????????(????)
  4. ???(L. Onsager)

31
??????
  • ?????
  • ?????
  • ?????????????
  • ???

?? ?11? ???????????????? ?12? ?????????????
---????????
32
????10-1
???? a, b, c, d, x, y ????? P(a,b,c,d,x,y) ????.
???? x, y ??????? PXY(x,y) ????????????????.
33
????10-2
??????????2????????
Write a Comment
User Comments (0)
About PowerShow.com