VLSI???? - PowerPoint PPT Presentation

1 / 46
About This Presentation
Title:

VLSI????

Description:

Title: VLSI VLSI Author: Last modified by: komatsu Created Date: 5/4/2001 8:32:10 AM Document presentation format – PowerPoint PPT presentation

Number of Views:76
Avg rating:3.0/5.0
Slides: 47
Provided by: 69357
Category:
Tags: vlsi | technology | vlsi

less

Transcript and Presenter's Notes

Title: VLSI????


1
VLSI????
  • ?? ?
  • ???????????????????????
  • (VLSI Design and Education Center VDEC)
  • komatsu_at_cad.t.u-tokyo.ac.jp
  • http//www.cad.t.u-tokyo.ac.jp
  • 2002?6?6?(?)

2
??
  • VLSI????????
  • ????????
  • ????
  • ??
  • ???????
  • ????
  • CAD
  • ???????????????

3
VLSI????????
  • VLSI?????????????
  • ??????????????????
  • ???????????
  • VLSI????
  • ???????????
  • ????????
  • ????????
  • ?????PDS????????
  • ????

4
???????
  • ??????????????
  • ???????100W????
  • ?????????????????????????2???????

???????????? (ITRS1999, 2000Update??,
http//public.itrs.net)
5
???????????
  • ??????
  • ??????
  • ???10??????????2??
  • ??????
  • ?????????????
  • ???????
  • ????
  • ??????????40??/?
  • ?1????????1W???????

6
CMOS???????
  • ????????
  • ?????????
  • ??????????

7
????????
  • ????CL????????????
  • VLSI???????????????

8
?????????
  • ???????????nMOS, pMOS?????ON????????
  • ?Vth???????

9
????????????
10
?????????
  • ???????
  • ???????
  • ???????????
  • ??????????
  • ?????????????

???????????????????????
11
VLSI?????????
  • ???????
  • ????????
  • SOI(Silicon On Insulator)
  • ???????????????????????????????
  • ?????????????
  • ?????????

12
VLSI?????????
  • ?????
  • ????????????(???????)
  • ????????????
  • ???????(???????????)
  • ???????????(????????)

13
????(glitch)???
  • ??????????????????
  • ??????????????????????????????

?????????????????????????
14
MTCMOS (Multithreshold-Voltage CMOS)
  • ???????????????????
  • ????????VDDV, GNDV?????????????
  • ????????Vt????????????

S. Mutoh et al., IEEE Journal of Solid State
Circuits, 1995.
15
Variable Threshold voltage CMOS (VTCMOS)
  • ???????????
  • ?????????Vt
  • ????????Vt

16
????????????
  • ????????
  • ???????????
  • ?????????
  • ?????????????
  • ??????????????
  • ??????????????
  • Application specific??????

17
????????
  • ???????????????????????
  • ?????????????????????????
  • ??????????????

18
????????????????????(1)
  • ??????????????????????????????????????
  • ???????????2??????????????????????

19
????????????????????(2)
  • ??????????????????????????????DSP?Video?Audio
  • ?????????????????
  • ?????????????????????????

Source Rabaey, Pedram, Low Power Design
Methodologies
20
Gated Clock
  • ????????????
  • ?????????????????????
  • ?????20???????????
  • ???????????????
  • ????????

21
?????(??)???????
  • ???????????
  • ??????????????????????????????
  • ??????????
  • ???????????????????????????

??????I/O???????????????????????????????????
22
VLSI???????????
  • ?????????????????
  • ?????????????????????????

23
?????????????????
  • ?????
  • ????????????????????
  • ???????????????
  • ??????
  • ??????????????????????
  • ??????????????????????
  • Application specific ???????????????

24
VLSI????????????????
  • ?????????????????????

3??????????????
???????????????????????
?????????
25
?????
  • ???????2?????????????
  • ??????????????????????????(DSP??)
  • ??2????????(??)(???)?????????????????
  • ????????????????????????

26
?????(2)
  • ?8??????

27
????????????
  • ?????????????????
  • ????????????????????????(???????)
  • Instruction?????????
  • ??????????????????

28
???????
  • ????2???????????(??????)???????????????????????1??
    ????????????/???????????
  • ??????????10??

29
?????????????(1)
  • ?????????(????)??????????????????????
  • Gray???
  • ??1????1???????
  • ????????????

30
?????????????(2)
  • T0???
  • ?????????????
  • ????????????????????
  • ?????1???
  • INC or Jump

31
???????????????
  • ????????
  • ?????????
  • ????????????????????????
  • INTEL SpeedStep, Transmeta Crusoe??
  • ???????????
  • ?????????????
  • ??????????????

32
?????CAD??
  • ????????
  • ???????????????????????????????????
  • 50???????????????
  • ??????????????????
  • ????????????
  • ???????????

33
Gate-level techniques
  • Optimization is carried out in three steps
  • Technology independent transformation
  • Library binding
  • Re-mapping

The synthesis flow must be a tightly coupled
estimation flow
34
Technology independent synthesis
  • Revised algebraic techniques
  • Modification of cost metric

35
Example of technology independent synthesis (1)
  • f1 is the least switched literal, though literal
    count is the same for all three factorizations.

36
Dont care-based optimization
  • Boolean optimization is more general and powerful
    than algebraic transformation.
  • Optimizing nodes function f may change the
    switching activity at the nodes output.
  • This variation propagates to fanout nodes.

37
Example of technology independent synthesis (2)
  • If the node has a large fanout, its increased
    switching activity cause an increase in the
    global switched-literal metric despite the local
    decrease.
  • To address this problem
  • Re-compute switching in fanout cones
  • Restrict the dont care set available

38
Library binding(technology mapping)
  • More detailed and accurate power optimization
    than technology independent power optimization
  • Partitioned in two contributions
  • Internal power (cell power)
  • Pdyn, Psc
  • External power (node power)
  • External Pdyn (driving cells)
  • Optimal mapping requires careful balancing of the
    two components, while satisfying side constraints.

39
Technology mapping
  • Low power library binding produces more reliable
    results
  • Accurate power model (gate capacitance, internal
    power)
  • 10 to 15 power savings for area-optimized
    circuits
  • Power and area reductions are positively
    correlated.

40
Example of technology mapping
41
Re-mapping transformations
  • Applied to gate-level netlist
  • Re-mapping transformations are currently the most
    successful power optimizations in commercial
    synthesis tools.
  • Back-annotation of wiring capacitance
  • Focus on hot spots
  • Significant room for improvement
  • Re-factoring, polarity assignment, pin swapping
  • All techniques are locally applied (single cell
    or a small group of cells)

42
Example of re-mapping transformations (1)
43
Rewiring method
  • Focusing on nets with high switching activity,
    and trying to eliminate them.
  • This method is powerful (15 to 20 switching
    reduction), but it has not been implemented in
    commercial tools.

44
Path equalization
  • Equalize the path lengths in the logic network.
  • Reduction of spurious switching
  • Applicable for arithmetic circuits

MAC unit of StrongARM Wallace-Tree multiplier
and carry look-ahead adder 23 power
reduction 25 speed up
45
Gate resizing
  • Synthesized logic has much more irregular
    structure than arithmetic circuit.
  • Gates on fast path -gt downsized (lower cap.)
  • Gates on slow path -gt enlarged (faster tr. time)
  • Reduction of spurious switching
  • Trade off between output switching power and
    internal short circuit power.

46
???????????????
  • ?????????
  • ????VDD???VT?????????SOI
  • ????????????????????
  • ??????????????
  • ?????????
  • ???????????????????????????????????
  • CAD??
  • Low Power CAD
  • ???????????
Write a Comment
User Comments (0)
About PowerShow.com