Title: Laura Brand
1A test generation framework for quiescent
real-time systems
- Laura Brandán Briones
- Dept. of CS, University of Twente, NL
- joint work with
- Ed Brinksma
2Do We Still Need Quiescence?
Yes!
money?
money?
coffee!
tea !
coffee?
tea?
tea?
coffee?
bang?
bang?
coffee?
tea?
tea?
coffee?
coffee!
tea !
3Do We Need Time?
Do We Need Coffee?
Do We Have Money?
Yes!
money?
money?
coffee!
coffee?
tea !
tea?
tea?
coffee?
x0
x0
x ? 6
x ? 6
4Overview
- Real-time input-output transition systems
- Timed implementation relation
- Real-time test generation
- Example
- Future work (?)
- Multi real-time input-output transition systems
- Multi timed implementation relation
- Multi real-time test generation
5- Real-time input-output transition systems
6non-delay actions are now assumed to occur
instantaneously
- LTS with delays
- s ? s (d?R) with
- (time determinism)
- s ? s and s ? s implies ss
- (density)
- s ? s iff ? s s ? s and s ?
s with dd1d2 - (null delay)
- s ? s iff ss
?(d)
?(d)
?(d)
?(d1)
?(d2)
?(d)
?(0)
7 8- For a system p, we extend the time transition
relation (?) with d (denoted ?(p)) - If for all o!?Lout q ?gt?,?
-
- q ? q
o!
d
9- Timed implementation relation
10- impl ?tiorf spec iff
- ttraces(?(impl)) ?
ttraces(?(spec)) - impl ?tiorf spec iff ?M(impl) ? ?M(spec)
- where ?M(p) ttraces(?(p)) ? (D.L ?
?(M).d) -
M
11- Outputs
- outM(s) o!(d) s gt ? d(M) s
quiescent - impl ? spec iff
- ?? outM( impl after ? ) ? outM( spec
after ? )
o!(d)
tiocoM
M
tiorf
ioco
12- Real-time test generation
13Test cases
x 0
Test case t ? TTA TTA Test Timed Automata
x? k
, xk
on? x0
off!
- labels in L ? ? , G(d)
- tree-structured
- finite, deterministic
- final states pass and fail
- from each state ? pass, fail
- choose input i? and time k
- wait k accepting all outputs o! and
- at k provide input i?, or
- wait accepting all outputs o! and ?
fail
x?M
off! x5 x0
? xM
off! xlt5
x?M
fail
fail
?
off!
fail
pass
14Test Generation Algorithm (untimed)
ioco-sound conforming implementation not
rejected ioco-complete non-conforming
implementations rejected (in the limit)
Apply recursively non-deterministically (
initially S s0 )
15Timed test generation
tiocoM-sound conforming implementation not
rejected tiocoM-complete non-conforming
implementations can be rejected
Apply recursively non-deterministically (
initially S s0 )
16 17Example
test
c!
t!
m?
x1
fail
x0
fail
spec
t!
c!
d
c?
fail
x1
fail
x0
t!
c!
d
fail
xM
pass
x0
t!
c!
b?
fail
impl Mk
x1
fail
x0
t!
t!
c!
c?
fail
x1
fail
x0
c!
t!
d
xM
fail
pass
fail
18Future work
- Extend the theory with multi input-output
- Confirm completeness (in the old sense)
- Evaluate applicability in practical situations
- Deal with the imprecision in measuring physical
time - Integrate with data testing
19Overview
- Real-time input-output transition systems
- Timed implementation relation
- Real-time test generation
- Example
- Future work (?)
- Multi real-time input-output transition systems
- Multi timed implementation relation
- Multi real-time test generation
20A generation framework for quiescent
test
real-time
multi input-output systems
input-output systems
- Laura Brandán Briones
-
- Ed Brinksma
21amount!
card!
card?
card!
x 0
x gt 5
card!
x gt 5
Pin?
x 5
Err-P!
x 0
card!
t
x 5
x ? 5
t
Err-a!
x 5
Ok!
x 0
amount?
x 5
Ok!
x 0
x ? 5
t
t
x 5
x 5
22Channels
23 24- L -quiescent (s)
- M quiescent (s)
- M quiescent (p)
- M-quiescent (p)
j
j
25Channels
26 272 1 2 3
? d d d
amount!
card!
card!
card?
x gt 5
x 0
card!
x gt 5
Pin?
x 5
Err-P!
1 1 2
x 0
? d d
card!
x ? 5
t
t
Err-a!
x 5
x 5
Ok!
x 0
1 1 2
1 1 2
? d d
? d d
d
amount?
x 5
Ok!
x 0
x ? 5
t
t
x 5
x 5
2 1 1 2
? ? d d
2 1 1 2
? ? d d
28a?.b!.c?.a?.b!
Ttraces
e(6).a?.e(3).b!.e(2).c?.e(1).a?.e(3).b!
e(6).a?.e(3).b!.e(2).c?.e(1).a?.e(3).b!
29(No Transcript)
30Outputs
- outM (s) U outM (s) U U outM (s)
- outM (s) o!(d) s gt
- U d (M ) j-quiescent(s gt)
- outM (s) U ? (d) i-refusal(s gt)
o
r
s?S
s?S
o
o!(d)
e(Mj)
j
j
e(d)
r
i
311
M ltM1, M2, M3gtM1 1M2 1M3 2
- card! ? outM (s after card?(2).d
(1).Pin?(2).Err-P!(3)) -
- outM (s after s) Ø ? s ? nttraces(s)
32Timed multi input-output implementation relation
- mtiocoM
- impl ?mtioco spec iff
-
- ?? outM (impl after ? ) ? outM (spec after ? )
M
33Test
mtiocoM-sound conforming implementation not
rejected mtiocoM-complete non-conforming
implementations can be rejected
Apply recursively non-deterministically (
initially S s0 )
34 35- Confirm completeness (in the old sense)
- Evaluate applicability in practical situations
- Deal with the imprecision in measuring physical
time - Integrate with data testing