Title: Review of exponential charging and discharging in RC Circuits
1CMOS INVERTER
CMOS means Complementary MOS NMOS and PMOS
working together in a circuit
VDD (Logic 1)
S
VOUT
D
D
VIN
S
2CMOS INVERTER RESPONSE
VOUT
VDD
VM Voltage when VIN VOUT ( VM)
VIN
D
C
B
E
A
VDD
3LAST TIME SINGLE TRANSISTOR CIRCUIT
ID
triode mode
saturation mode
VGS 3 V
VDS VGS - VTH(N)
X
Linear ID vs VDS given by surrounding circuit
VGS 1 V
X
VDS
4ANALYSIS OF INVERTER CIRCUT
- Obtain
- the two nonlinear ID vs. VDS equations for the
transistors ID(N) vs. VDS(N) and ID(P) vs.
VDS(P) - A linear relationship between ID(N) and ID(P)
(e.g., via KCL) - An independent linear relationship between VDS(N)
and VDS(P) (e.g. via KVL) - Using the above, write
- ID(P) vs. VDS(P) in terms of ID(N) vs. VDS(N) (or
vice-versa) - Solve the two transistor equations simultaneously.
5ANALYSIS OF INVERTER CIRCUIT UNLOADED
VDD (Logic 1)
- Transistor equations
- ID(N) fN(VDS(N))
- ID(P) fP(VDS(P))
- ID(P)ID(N) 0
- VDS(N)-VDS(P) VDD
- Rewrite 1) as
- ID(N) -fP(VDS(N)-VDD)
S
VOUT
D
D
VIN
S
Find simultaneous solution to ID(N)
fN(VDS(N)) ID(N)
-fP(VDS(N)-VDD)
6ANALYSIS OF INVERTER CIRCUIT UNLOADED
VDD (Logic 1)
Also note VGS(N) VIN VGS(P) VIN -
VDD VOUT VDS(N)
VGS(P) -
S
VOUT
D
VDS(N) _
D
VIN
VGS(N) -
S
7CMOS INVERTER REGION A
ID
VGS(N) lt VTH(N)
VDS(P) VGS(P) - VTH(P)
VGS(P) lt VTH(N) - VDD
No current flow in Region A!
NMOS cutoff mode PMOS triode mode
VDS
VDD
8CMOS INVERTER REGION B
ID
VGS(N) VTH(N) e
VDS(P) VGS(P) - VTH(P)
VGS(P) VTH(N) e - VDD
NMOS saturation mode PMOS triode mode
VDS(N) VGS(N) - VTH(N)
VDS
VDD
9CMOS INVERTER REGION C
ID
NMOS saturation mode PMOS saturation mode
VDS(P) VGS(P) - VTH(P)
VDS(N) VGS(N) - VTH(N)
VDS
VDD
10CMOS INVERTER REGION D
VGS(N) VDD VTH(P) - e
ID
VGS(P) VTH(P) - e
VDS(N) VGS(N) - VTH(N)
NMOS triode mode PMOS saturation mode
VDS(P) VGS(P) - VTH(P)
VDS
VDD
11CMOS INVERTER REGION E
VGS(N) gt VTH(P) VDD
ID
VDS(N) VGS(N) - VTH(N)
VGS(P) gt VTH(P)
No current flow in Region E!
NMOS triode mode PMOS cutoff mode
VDS
VDD
12CMOS INVERTER RESPONSE CURRENT FLOW
ID
VIN
D
C
B
E
A
VDD
13- No ID current flow in Regions A and E if nothing
attached to output current flows only during
logic transition - If resistor or diode attached to output, current
will flow through PMOS when input is low (output
is high) - If another inverter (or other CMOS logic)
attached to output, transistor gate terminals of
attached stage do not permit current current
flows only during logic transition
VDD
S
VOUT2
D
D
VIN
S
14EXAMPLE RESISTIVE LOAD
VDD 5 V
Find the power absorbed by the resistor and the
inverter. Power absorbed by inverter P
ID(P)VDS(P) ID(N)VDS(N)
S
VOUT
D
D
VIN 0 V
Let W/L m COX 1 mA, VTH(N) -VTH(P) 1 V, l
0.
1 kW
S
- Transistor equations
- ID(N) 0 A (NMOS cutoff)
15EXAMPLE RESISTIVE LOAD
- ID(N) and ID(P) relationship
- ID(P)ID(N) -VOUT / 1 kW
- VDS(N) and VDS(P) relationship
- VDS(N)-VDS(P) VDD
VDD 5 V
S
VOUT
D
D
VIN 0 V
1 kW
S
4) Substitute into PMOS transistor equation
16EXAMPLE RESISTIVE LOAD
- Solutions
- VDS(P) -8.87 V, -1.13 V
- VDS(P) -1.13 V agrees with triode mode
- ID(P) -3.24 mA
VDD 5 V
S
VOUT
D
D
VIN 0 V
1 kW
S
Power absorbed by inverter ID(P)VDS(P)
ID(N)VDS(N) 3.66 mW Power absorbed by
resistor R I2 (1 kW)(-3.24 mA)2 10.5 mW