?????????????? ??????? (CSSGBJ) - PowerPoint PPT Presentation

About This Presentation
Title:

?????????????? ??????? (CSSGBJ)

Description:

Title: Author: hanjing Last modified by: Han Jing Created Date: 10/27/2003 8:42:02 AM Document presentation format: – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 26
Provided by: hanjing
Category:

less

Transcript and Presenter's Notes

Title: ?????????????? ??????? (CSSGBJ)


1
????????
  • ????????????????????? (CSSGBJ)
  • ? ?
  • 2003?10?27?

2
??????????????
  • ????????
  • ????(Spin Glasses)????
  • ??????????????????????
  • ?????????????

3
??????? (??????)
  • ??????
  • Entropy, Boltzmann??(partition function)
  • Example K-SAT?????
  • Dynamics and Landscapes
  • ????, landscapes, Monte Carlo Simulation
  • Example Simulated Annealing(????)
  • Meanfield, Replica Symmetry, Cavity Methods
  • Meanfield ??????????
  • Replica Symmetry ?????????
  • Cavity Methods Survey Propagation
  • Critical Phenomena Power-law
  • ??
  • SOC, HOT/COLD??

4
????
  • Statistical physics is about systems composed of
    many parts. ???? ?????????
  • Traditional examples
  • ???????? - ?????
  • ?????? - ??
  • ??? - ??,??? - ???
  • Complex systems examples
  • ???? - ??
  • ???? - ?
  • ????? - ???
  • ?? - ???agent
  • ?? - ???? - ???? - ??
  • ???? ?? ?????????????????

5
Collective Behavior ????
http//angel.elte.hu/vicsek/
  • ????
  • ????????????
  • ???????????????,???????????,???????
  • ??????????????????????.(?????????????)
  • ???????????????
  • ??????????????????????
  • ?????????????????
  • ????go???? ? ?????????
  • ????
  • ????

6
????(Spin Glasses)
  • ???????,????,????
  • ??spin si ????spin??????
  • ?????Ising????
  • si1 ?? 1
  • ?lattice???,??spin???????
  • ??(Hamiltonian)E - ?J(i-1)isi-1si
  • Jijgt0, ??????Jijlt0, ???????Jij0,?????
  • ????? E - ?Jijsisj - ?hisi
  • ????/?????????????
  • ????????????????????

E- ?Jijsisj
7
Spin Glass
  • Configuration r s1,s2,,sn
  • Hamiltonian (E, Cost function) E(r)JHJ(r)
    -?Jiksisk
  • Quenched variable J, random variable a
    probability distribution P(J)Different Spin
    model different P(J)
  • Notationltggt?PJ(s)g(s)
  • So-called Disorder Structural parameter J is
    random and have large complexity

8
??????- K-SAT??
  • ??NP-????
  • N????? xiTrue/False, si1/-1
  • M?clauses M??k?????????K3, 3-SAT c1x1 or
    (not x3) or x8, c2(not x2) or x3 or (not x4),
    c3x3 or x7 or x9,
  • ??????M?clauses ? N??????????
  • Spin glass ??? E - ?a1,M?(Ca T),Ground State
    E-M ????
  • ???K3, M/N 4.25, ??????

9
????
  • ??????????????????????????????????
  • ??(??????????)
  • ????????
  • ?????????????
  • ??????????
  • ??????
  • ????????????
  • ????????
  • ??????? (Go)
  • ?????????????????????
  • ?????????????
  • ????????????????

10
Begin
  • ?????????????
  • ???
  • ????????,?????????(??????)
  • ???
  • ?? Boltzmann?? (partition function)

11
???????
  • ??????
  • Entropy, Boltzmann??(partition function)
  • Example K-SAT?????
  • Dynamics and Landscapes
  • ????, landscapes, Monte Carlo Simulation
  • Example Simulated Annealing(????)
  • Meanfield, Replica Symmetry, Cavity Methods
  • Meanfield ??????????
  • Replica Symmetry ?????????
  • Cavity Methods Survey Propagation
  • Critical Phenomena Power-law
  • ??
  • SOC, HOT/COLD??

12
Entropy
  • Microstate r a specific configuration of system
  • Macrostate R an evaluation value
  • ?(R) number of microstates related to a
    macrostate
  • Micro-canonical entropy S(R)k log ?(R)
  • More General forms
  • A macrostate R pi for system be found in a
    microstate i
  • A distribution of
    microstates.
  • Gibbs Entropy S(R) -k ?pi logpi Maximum ? the
    most possible distribution of microstates
  • Without constraint on pi, pi1/N ? S is
    maximized

?(ni)M!/n1!n2!...nN!, pini/M
13
With Constraint on pi Partition Function Z
  • Observable quantity E (Hamiltonian)
  • Ergodic Hypothesis (time averageensemble
    average)
  • We know
  • From experiments ltEgt,
  • Ei for all ri, and ltEgt ltEgt ?piEi, ?pi1.
  • We want to know the most probable distribution of
    microstates
  • Maximize S-k?pilogpi and we get
  • pie-ßEi/Z, Z?ie-ßEi (ß(kT)-1)
  • So, pi and ß is decided by Ei and ltEgt
  • Knowing ßor T and Ei, we can define the most
    possible distribution of microstates pi and Z
  • ß? ? T? ? ltEgt? ? Z? distribution is less
    symmetrical

14
Toy Example
  • Three microstates E10, E22, E33
  • We have p1E1p2E2p3E3ltEgt
  • e.g. 2p23p3ltEgt, and p1p2p31
  • 3 temperatures decreasing order of T

ltEgt ß Z p1 p2 p3
1 1.5 0.105 2.540 0.393 0.319 0.287
2 1 0.420 1.716 0.583 0.252 0.165
3 0.3 1.083 1.154 0.867 0.099 0.034
15
Important concepts
  • Partition function Z(T,E)?re- E(r)/T
  • Knowing this, we can do a lot of
    things!Variance of E, sol,
  • Free Energy F -k T lnZ (?)
  • Entropy S- (?F/? T)E-k ?pilnpi

16
Z and sol (ground state)
  • Z (T)?re-E(r)/T ?H1,2,?rE(r)H e-H/T
  • When T?0, system are most likely in the ground
    state. e-E(r)/T ?0 except E(r)0
  • Z(0) ? rE(r)0 e-0 ? rE(r)0
  • So, number of ground states Z(0).
  • In Tgt0, Z also counts other r that E(r)gt0. But
    the lower T, the r with lower E(r) Z counts. Z
    is decreasing when T is decreasing.
  • The K-SAT result considers T0.

17
???????
  • ??????
  • Entropy, Boltzmann??(partition function)
  • Example K-SAT?????
  • Dynamics and Landscapes
  • ????, landscapes, Monte Carlo Simulation
  • Example Simulated Annealing(????)
  • Meanfield, Replica Symmetry, Cavity Methods
  • Meanfield ??????????
  • Replica Symmetry ?????????
  • Cavity Methods Survey Propagation
  • Critical Phenomena Power-law
  • ??
  • SOC, HOT/COLD??

18
????
  • ???2?????r1?r2, r1??????????r2.

00
01
10
11
19
??????????
  • Rijprobability of ri changes to rj
  • ?????????????,?????
  • pRp, R ?????????(????1)
  • ????
  • ????????,piRijpjRji

20
Ergodicity breaking and Landscape
  • Mapping of microstates onto energies

barrier
Very high, unlikely to cross, when system size
is large,T is low pi/pje-(Ei-Ej)/T
r1
r2
r3
rn

21
Monte Carlo Simulation
  • ????????,????????????????? P?
  • ???????????,?
  • ?P???????Rij

22
Simulated Annealing
  • ??P?Boltzmann??pi?e-Ei/T?
  • Rij/Rjie-(Ej-Ei)/T
  • Rij 1 if Ej?Ei
  • e-(Ej-Ei)/T if EjgtEi
  • Simulated Annealing
  • We want to minimize E
  • T0, ergodicity breaking, favors minimal E
  • Tgt0, barriers can be crossed, favors more states
  • Most problems have many metastable states (local
    optima), various scales of barriers heights

23
???????
  • ??????
  • Entropy, Boltzmann??(partition function)
  • Example K-SAT?????
  • Dynamics and Landscapes
  • ????, landscapes, Monte Carlo Simulation
  • Example Simulated Annealing(????)
  • Meanfield, Replica Symmetry, Cavity Methods
  • Meanfield ??????????
  • Replica Symmetry ?????????
  • Cavity Methods Survey Propagation
  • Critical Phenomena Power-law
  • ??
  • SOC, HOT/COLD??

24
Replica Approach and P(J)
  • For a given J, free energy densityfJ-1/(ßN) ln
    ZJ
  • For a P(J), we want to know ltfgt?P(J)fJ
  • For n replicas Zn?JP(J)(ZJ)nlt(ZJ)ngt
  • (ZJ)n?s1?s2?sn exp-?a1nßHJ(sa)si is
    the i th replica.
  • fn-1/(ßnN) ln Zn, ln Z Lim n?0 (Zn-1/n)
  • We get ltfgt Lim n?0 fn f0

25
????
  • http//groups.yahoo.com/group/CSSGBJ/
  • Mark Newman 2001 ?????????? http//www.santafe.edu
    /mark/budapest01/
  • K-SAT?? Nature, Vol 400, July 1999, p133-137
  • Survey Propagation Science, Vol 297, Aug. 2002,
    p812-815, p784-785.
  • SOC ???????, Per Bak.
  • HOT/COLD
  • HOT Highly Optimized Tolerance A Mechanism for
    Power Laws in Designed Systems. J. M. Carlson,
    John Doyle. (April 27, 1999)
  • COLD Optimal design, robustness, and risk
    aversion. M. E. J. Newman, Michelle Girvan and J.
    Doyne Farmer
Write a Comment
User Comments (0)
About PowerShow.com