Title: 1D hopping transport with nearest-neighbor interactions
11D hopping transport with nearest-neighbor
interactions
?? 2011.12
2(No Transcript)
3(No Transcript)
4Equilibrium system
Gibbs-Boltzmann distribution
Heat, particle, or volume exchanges are reversible
In the P-V plane
reversible transformation
the external conditions are varied slowly enough
5Equilibrium VS nonequilibrium system
Master equation
6stationary state
Master equation
Detailed balance
7stationary state
If
and
Metropolis rate
8KatzLebowitzSpohn (KLS) model
Y
E
X
along, transverse, agaist the field
9Zero rang process
Periodic boundary condition
10Zero rang process
11 simple exclusion process (SEP)
asymmetric simple exclusion process (ASEP)
symmetric simple exclusion process (SSEP)
totally asymmetric simple exclusion process
(TASEP)
12Physical quantity in TASEP
13Physical quantity in TASEP
14Physical quantity in TASEP
15Physical quantity in TASEP
16Mean field theory
density profile
17Mean field theory
maximal-current phase
18Mean field theory
(HD)
19(No Transcript)
20Detailed balance
21Unidirectional hopping transport
four-site dependent rate
22Unidirectional hopping transport
Mean field
23Mean field
24Time dependent density functional theory
Solved by Maple
25Unidirectional hopping transport
26Unidirectional hopping transport
27Unidirectional hopping transport
correlator
28Unidirectional hopping transport
29Unidirectional hopping transport
30Time dependent density functional theory
31Equilibrium density correlator
32Equilibrium density correlator
33(No Transcript)
34Equilibrium density correlator
35Kinetic monte carlo method
36Kinetic monte carlo method
tglobaltglobaltmin
37Results of classical DFT calculations
38Results of classical DFT calculations
39(No Transcript)
40Coupling mechanism II
41Bulk-adapted couplings
42Bulk-adapted couplings
43outlook
Long range Coulomb interactions?
44outlook
- Quantum transport processes for particle-particle
interactions -
- photoelectric devicesclassical TDFT
-
- Controlling transport on the nanoscale
45reference
Exact density functionals in one dimension 2000
J. Phys. A Math. Gen. 33 L41
Kinetics in one-dimensional lattice gas and Ising
models from time-dependent density-functional
theory Phys. Rev. E 65, 066112 (2002)
46