Title: Simulating Spatial Partial Differential Equations with Cellular Automata
1Simulating Spatial Partial Differential Equations
with Cellular Automata
- By Brian Strader
- Adviser Dr. Keith Schubert
- Committee Dr. George Georgiou
- Dr. Ernesto Gomez
2- Partial Differential Equation, Cellular Automata
(CA), Biology - Converting Differential Equations to CA
- CA Theoretical Constraints
- Convergence Maps Guidelines
3- CA Model uses simple rules about changes with
time. - Rules are localized and involve the values of
cell neighbors. - The set of rules are applied to the cells with
the matrix after each time period.
4Survival Rule 2-3 Neighbors
Death by Overpopulation 4 Neighbors
5Death by Isolation 1 or Less Neighbors
Birth 3 Neighbors
6t 0
7Introduction Background
t 1
8t 2
9t 3
10- Celluar Automata Simulation
11- Celluar Automata Simulation
12- Spatial Partial Diff. Equations
- Changes with respect to time.
- Part of the equation depends on changes in space.
13 14- Simple Rules - easy to understand
- Discretized
- Local Problem View
- Highly Parallelizable
15Converting Differential Equations to CA
Conditions for n(u) up where p lt 1 for o(u)
up where p lt 1
16Converting Differential Equations to CA
Conditions for n(u) up where p lt 1 for o(u)
up where p lt 1
17Converting Differential Equations to CA
Conditions for n(u) up where p lt 1 for o(u)
up where p lt 1
18Converting Differential Equations to CA
- Discretization Techniques
19Converting Differential Equations to CA
Large hx
Small hx
20Converting Differential Equations to CA
Forward Eulers Method
21Converting Differential Equations to CA
22Converting Differential Equations to CA
Backward Eulers Method
23Converting Differential Equations to CA
Forward Eulers Method
Backward Eulers Method
24Converting Differential Equations to CA
Forward Eulers Method
1
2
3
4
5
i1
j
j-1
j1
3.2
5.7
7.3
9.2
-7.5
i2
j
j-1
j1
25CA Theoretical Constraints
26CA Theoretical Constraints
- Convergence and Divergence
27CA Theoretical Constraints
- Time Domain Frequency Domain
- Discrete Form of Laplace Transform and related to
the Fourier Transform - Transformation makes life easier
- zeros when f(z)0 poles when g(z)0
28CA Theoretical Constraints
29CA Theoretical Constraints
1. Perform z-transform 2. Solve for Uj 3. Find
poles and zeros for Ujf(z)/g(z) 4. Set poles
and zeros values of z lt 1 to converge
30CA Theoretical Constraints
- Forward Eulers Constraints
Forward Eulers Linear Form
Zeros Constraint
31CA Theoretical Constraints
- Forward Eulers Constraints
Forward Eulers Linear Form
Poles Constraint
32CA Theoretical Constraints
- Backward Eulers Constraints
Backward Eulers Linear Form
Zeros Constraint
33CA Theoretical Constraints
- Backward Eulers Constraints
Backward Eulers Linear Form
Poles Constraint
34Convergence Maps Guidelines
1
2
3
4
5
i1
j
j-1
j1
1.1
1.9
2.8
2.6
5.4
i2
...
j
j-1
j1
0.11
0.34
0.27
0.4
0.56
in-1
lt 10-10
j
j-1
j1
0.1
0.35
0.27
0.4
0.57
in
j
j-1
j1
35Convergence Maps Guidelines
1
2
3
4
5
i1
j
j-1
j1
1.1
1.9
2.8
2.6
5.4
i2
...
j
j-1
j1
1.2
872
927
-722
-256
in-1
gt 1010
j
j-1
j1
541
-5623
-897
456
878
in
j
j-1
j1
36Convergence Maps Guidelines
1
2
3
4
5
i1
j
j-1
j1
1.1
1.9
2.8
2.6
5.4
i2
...
j
j-1
j1
1
2.1
3.1
3.9
5
i3999
j
j-1
j1
1.1
2.1
3
4
5.1
i4000
j
j-1
j1
37Convergence Maps Guidelines
38Convergence Maps Guidelines
39Convergence Maps Guidelines
40Convergence Maps Guidelines
a1
41Convergence Maps Guidelines
a2
42Convergence Maps Guidelines
Poles Constraint
43Convergence Maps Guidelines
44Convergence Maps Guidelines
45Convergence Maps Guidelines
46Convergence Maps Guidelines
Zeros Constraint
47Convergence Maps Guidelines
- Substituting Uj-1 and Uj1
0.11
0.34
0.27
0.4
0.56
0
0
j
j-1
j1
48Convergence Maps Guidelines
- Zeros Boundary Constraint
49Convergence Maps Guidelines
- Zeros Boundary Constraint
50Convergence Maps Guidelines
If ((upperZero and lowerPole intersects) and
(intesection lt initial point)) then htMax
intersection safetyBuffer Else htMax
initial point safetyBuffer End ht
userInput( lt htMax) hxlowerPole(ht)
51Convergence Maps Guidelines
52Conclusion
53Conclusion
Zeros Constraint
Poles Constraint
54Conclusion
If ((upperZero and lowerPole intersects) and
(intesection lt initial point)) then htMax
intersection safetyBuffer Else htMax
initial point safetyBuffer End ht
userInput( lt htMax) hxlowerPole(ht)
55Conclusion
- Proofs of Observations
- Quadratic General Form
- Efficient Parallelization
- Simulation Error
56Conclusion
Paul Rochester. Euler's Numerical Method for
Solving Differential Equations. November 2009.
http//people.bath.ac.uk/prr20/ma10126webpage.html
Region of Convergence. Wikipedia. November
2009. http//en.wikipedia.org/wiki/Z-transform K
eith Schubert. Cellular automaton for bioverms,
October 2008. Jane Curnutt, Ernesto Gomez, and
Keith Evan Schubert. Patterned growth in extreme
environments. 2007. Cell Image -
http//askabiologist.asu.edu/research/buildingbloc
ks/images/cell.jpg Martin Gardner. The fantastic
combinations of john conways new solitaire
game life. Scientific American, (223)120123,
1970. T.A. Burton, editor. Modeling and
Differential Equations in Biology. Pure
and Applied Mathematics. Marcel Dekker Inc.,
1980. J. von Hardenberg, E. Meron, M. Shachak,
and Y. Zarmi1. Diversity of vegetation patterns
and desertification. Physical Review Letters,
87(19), November 2001.
57Conclusion
- Acknowledgements
- and Questions?