Title: Primate and Human Evolution main points
1Chapter 19
Primate and Human Evolutionmain points.1.
primates demonstrate a great deal of variation
andincreasing complexity through time.2.
hominids include present day humans and their
extinct ancestors.3. human evolution is very
complex and in constant state of flux due to new
fossil discoveries made frequently.4. most
famous fossil humans are Neanderthals, which were
suddenly succeeded by Cro-Magnons about 30,000
years ago.
2Who are we?
- Who are we?
- Where did we come from?
- What is the human genealogy?
- These are basic questions
- that probably everyone at some time or another
- has asked themselves
3Goes Back Farther Than We Thought
- Many people enjoy tracing
- their own family history as far back as they can,
- similarly paleoanthropologists are discovering,
- based on recent fossil finds
- that the human family tree goes back
- much farther than we thought
4What Are Primates?
- Primates are difficult to characterize as an
order - because they lack the strong specializations
- found in most other mammalian orders
- We can, however, point to several trends
- in their evolution that help define primates
- and are related to their arboreal,
- or tree-dwelling, ancestry
5Trends in Primates
- These include changes in the skeleton
- and mode of locomotion,
- an increase in brain size,
- a shift toward smaller, fewer, and less
specialized teeth, - the evolution of stereoscopic vision
- and a grasping hand with opposable thumb
- Not all these trends took place in every primate
group, - nor did they evolve at the same rate in each group
6Classification of Primates
- The primate order is divided into two suborders
- The prosimians, or lower primates,
- include the lemurs, lorises, tarsiers, and tree
shrews, - while the anthropoids, or higher primates,
- include monkeys, apes, and humans
7Prosimians
- Prosimians are generally small,
- ranging from species the size of a mouse
- up to those as large as a house cat
- They are arboreal, have five digits
- on each hand and foot
- with either claws or nails,
- and are typically omnivorous
- They have large, forwardly directed eyes
- specialized for night vision,
- hence most are nocturnal
8Prosimians
- As their name implies
- pro means "before," and simian means "ape,
- prosimians are the oldest primate lineage,
- and their fossil record extends back to the
Paleocene - During the Eocene prosimians were
- abundant, diversified, and widespread
- in North America, Europe, and Asia
9Prosimians Are Tropical
- By the Oligocene, hardly any prosimians
- were left in the northern continents
- as the once widespread Eocene populations
- migrated south to the warmer latitudes
- of Africa, Asia, and Southeast Asia
- Presently, prosimians are found
- only in the tropical regions
- of Asia, India, Africa, and Madagascar
10Anthropoids
- Anthropoids evolved from a prosimian lineage
- sometime during the Late Eocene,
- and by the Oligocene
- they were well established
- Anthropoids are divided into three superfamilies
11Classification of Primates
- Order Primates
- Suborder Prosimii (lower primates) Lemurs,
lorises, tarsiers, tree shrews - Suborder Anthropoidea (Higher primates Monkeys,
apes, humans - Superfamily Cercopithecoidea Macaque, baboon,
proboscis monkey - Superfamily Ceboidea Howler, spider, and
squirrel monkeys - Superfamily Hominoidea Apes, humans
- Family Pongidae Chimpanzees, orangutans,
gorillas - Family Hylobatidae Gibbons, siamangs
- Family Hominidae Humans
12Old World Monkey Attributes
- Old World monkeys
- superfamily Cercopithecoidea
- are characterized by close-set,
- downward-directed nostrils
- like those of apes and humans
- grasping hands,
- and a nonprehensile tail
- They include
- the macaque,
- baboon,
- and proboscis monkey
13Old World Monkeys Distribution
- Present-day Old World monkeys
- are distributed in the tropical regions
- of Africa and Asia
- and are thought to have evolved
- from a primitive anthropoid ancestor,
- such as Aegyptopithecus,
- sometime during the Oligocene
14New World Monkeys
- New World monkeys
- superfamily Ceboidea
- are found only in Central and South America
- They probably evolved from African monkeys
- that migrated across the widening Atlantic
- sometime during the Early Oligocene,
- and they have continued evolving in isolation
- to this present day
15No Contact
- No evidence exists of any prosimian
- or other primitive primates
- in Central or South America
- nor of any contact with Old World monkeys
- after the initial immigration from Africa
- New World monkeys are characterized
- by a prehensile tail, flattish face,
- and widely separated nostrils
- and include the howler, spider, and squirrel
monkeys
16Hominoids
- Hominoids
- superfamily Hominoidea
- consist of three families
- the great apes
- family Pongidae
- which includes chimpanzees, orangutans, and
gorillas - the lesser apes
- family Hylobatidae
- which are gibbons and siamangs
- and the hominids
- family Hominidae
- which are humans and their extinct ancestors
17Hominoid Lineage
- The hominoid lineage
- diverged from Old World monkeys
- sometime before the Miocene,
- but exactly when is still being debated
- It is generally accepted, however,
- that hominoids evolved in Africa,
- probably from the ancestral group
- that included Aegyptopithecus
18Climatic Shifts
- Recall that beginning in the Late Eocene
- the northward movement of the continents
- resulted in pronounced climatic shifts
- In Africa, Europe, Asia, and elsewhere,
- a major cooling trend began,
- and the tropical and subtropical rain forests
- slowly began to change to a variety of mixed
forests - separated by savannas and open grasslands
- as temperatures and rainfall decreased
19Apes Adapted
- As the climate changed,
- the primate populations also changed
- Prosimians and monkeys became rare,
- whereas hominoids diversified
- in the newly forming environments
- and became abundant
- Ape populations became reproductively isolated
- from each other within the various forests,
- leading to adaptive radiation
- and increased diversity among the hominoids
20Migration of Animals Possible
- During the Miocene,
- Africa collided with Eurasia,
- producing additional changes in the climate,
- as well as providing opportunities
- for migration of animals
- between the two landmasses
21Hominoid Relationships
- Two apelike groups evolved during the Miocene
- that ultimately gave rise to present-day
hominoids - Although scientists still disagree
- on the early evolutionary relationships among the
hominoids, - fossil evidence and molecular DNA similarities
- between modern hominoid families
- is providing a clearer picture of the
evolutionary pathways - and relationships among the hominoids
22One of the Earliest Anthropoids
- Skull of Aegyptopithecus zeuxis,
- one of the earliest known anthropoids
23Dryopithecines
- The first group, the Dryopithecines,
- evolved in Africa during the Miocene
- and subsequently spread to Eurasia,
- following the collision between the two
continents - The dryopithecines were a varied group of
hominoids - in size,
- skeletal features,
- and life-style
24Proconsul
- The best-known dryopithecine and perhaps
- ancestor of all later hominoids
- is Proconsul,
- an ape-like fruit-eating animal
- that led a quadrupedal arboreal existence,
- with limited activity on the ground
- The dryopithecines were very abundant
- and diverse during the Miocene and Pliocene,
- particularly in Africa
25Sivapithecids
- The second group, the Sivapithecids,
- evolved in Africa during the Miocene
- and then spread throughout Eurasia
- The fossil remains of Sivapithecids
- consist mostly of jaws, skulls, and isolated
teeth - There are few body or limb bones known,
- and thus we know little about their body anatomy
26Sivapithecids Ate Harder Foods
- All sivapithecids had powerful jaws and teeth
- with thick enamel and flat chewing surfaces,
- suggesting a diet of harder foods such as nuts
- Based on various lines of evidence,
- the Sivapithecids appear to be the ancestral
stock - from which present-day orangutans evolved
27Two Lineages
- Although many pieces are still missing,
- particularly during critical intervals
- in the African hominoid fossil record,
- molecular DNA as well as fossil evidence
indicates - that the Dryopithecines, African apes, and
hominids form a closely related lineage - The Sivapithecids and orangutans
- form a different lineage that did not lead to
humans
28Hominids
- The hominids (family Hominidae)
- the primate family that includes present-day
humans - and their extinct ancestors
- have a fossil record extending back
- to almost 7 million years
- Several features distinguish them from other
hominoids - Hominids are bipedal
- that is, they have an upright posture,
- which is indicated by several modifications in
their skeleton
29Comparison of Locomotion
- Comparison between quadrupedal and bipedal
locomotion - in gorillas and humans
- In gorillas the ischium bone is long
- and the entire pelvis is tilted toward the
horizontal
30Comparison of Locomotion
- Comparison between quadrupedal and bipedal
locomotion - in gorillas and humans
- In humans the ischium bone is much shorter
- and the pelvis is vertical
31Larger Reorganized Brain
- In addition, hominids show a trend
- toward a large and internally reorganized brain
- An increase in brain size and organization
- is apparent in comparing the brains of
- a New World Monkey
32Other Distinguishing Features
- Other features that distinguish hominids from
other hominoids include - a reduced face
- and reduced canine teeth,
- omnivorous feeding,
- increased manual dexterity,
- and the use of sophisticated tools
33Geologic Age Ranges
- The geologic age ranges
- for the commonly accepted species of hominids
34Debates
- Remember that although the fossil record
- of hominid evolution is not complete,
- what does exist is well documented
- Furthermore, it is the interpretation of that
fossil record - that precipitates the often vigorous
- and sometimes acrimonious debates
- concerning our evolutionary history
35Oldest Hominid
- Sahelan-thropus tchadensis,
- the oldest known hominid,
- nearly 7 million years old,
- was discovered in 2002 in Chad
36Oldest Hominid
- Besides being the oldest hominid,
- humans and their extinct ancestors,
- Sahelanthropus tchadensis shows a mosaic
- of primitive and advanced features
- that has excited and puzzled paleoanthropologists
- The small brain case and most of the teeth
- (except the canines) are chimp-like
- However, the nose, which is fairly flat,
- and the prominent brow ridges
- are features only seen, until now,
- in the human genus Homo
37Australopithecines
- Australopithecine is a collective term
- for all members of the genus Australopithecus
- Currently, five species are recognized
- A. anamensis,
- A. afarensis,
- A. africanus,
- A. robustus,
- and A. boisei
38Lucy
- A reconstruction of Lucys skeleton
- by Owen Lovejoy
- and his students at Kent State University, Ohio
- Lucy is an 3.2-million-year-old
- Australopithecus afarensis individual
- whose fossil remains were discovered by Donald
Johanson
- This recon-struction
- illustrates how adaptations in
- Lucys hip, leg and foot
- allowed a fully bipedal
- means of locomotion
39Lucy
40Lucys Babyactually 3.3 MY old
View from back, shoulder blades
- Fossil of A afarensis from Dikkia, Ethiopia
- 3 yr old child, found in sandstone- died during
flood? - Actually 100,000 yrs older than Lucy!
- Most complete skeleton ever found!
Scientific American Dec 2006
41Hominid Footprints
- Preserved in volcanic ash at Laetoli, Tanzania
- Discovered in 1978 by Mary Leakey,
- these footprints proved hominids
- were bipedal walkers at least 3.5 million years
ago - The footprints of two adults and possibly those
of a child - are clearly visible in this photograph
42Brain Size of A. afarensis
- A. afarensis had a brain size of 380450 cubic
centimeters (cc), - larger than the 300400 cc
- of a chimpanzee
- but much smaller than that of present-day humans
(1350 cc average)
43Apelike Features
- The skull of A. afarensis retained many apelike
features, - including massive brow ridges
- and a forward-jutting jaw,
- but its teeth were intermediate
- between those of apes and humans
- The heavily enameled molars
- were probably an adaptation to chewing fruits,
seeds, and roots
44Landscape with A. afarensis
- Re-creation of a Pliocene landscape
- showing members of
- Australo-pithecus afarensis
- gathering and eating
- various fruits and seeds
45Skull of A. africanus
- A reconstruction of the skull
- of Australopithecus africanus
- This skull,
- known as that of the Taung Child,
- was discovered by Raymond Dart in South Africa in
1924 - and marks the beginning of modern
paleoanthropology
46Not As Well Adapted for Bipedalism
- It appears the limbs
- of A. africanus may not have been
- as well adapted for bipedalism
- as those of A. afarensis
47Robust Species
- Both A. afarensis and A. africanus
- differ markedly from the so-called robust species
- A. boisei (2.61.0 million years ago)
- and A. robustus (2.01.2 million years ago)
- A. boisei was 1.21.4 m tall
- and weighed between 34 and 49 kg
- It had a powerful upper body,
- a distinctive bony crest on the top of its skull,
- a flat face, and the largest molars of any
hominids
48A. robustus Was a Vegetarian
- A. robustus, in contrast,
- was somewhat smaller (1.11.3 m tall)
- and lighter (3240 kg)
- It had a flat face, and the crown of its skull
- had an elevated bony crest
- that provided additional area
- for the attachment of strong jaw muscles
- Its broad flat molars indicated
- A. robustus was a vegetarian
49Australopithecus robustus Skull
- The skull of Australopithecus robustus
- This species had a massive jaw,
- powerful chewing muscles,
- and large broad flat chewing teeth
- apparently used for grinding up coarse plant food
50Separate Lineage
- Most scientists accept the idea
- that the robust australopithecines
- form a separate lineage
- from the other australopithecine
- that went extinct 1 million years ago
51The Human Lineage
- Homo habilis
- The earliest member of our own genus Homo
- is Homo habilis,
- which lived 2.5-1.6 million years ago
- Its remains were first found at Olduvai Gorge,
- but it is also known
- from Kenya, Ethiopia, and South Africa
- H. habilis evolved from the A. afarensis and A.
africanus lineage - and coexisted with A. africanus
- for about 200,000 years
52Geologic Age Ranges
- The geologic age ranges
- for the commonly accepted species of hominids
53Characteristics of Homo habilis
- H. habilis had a larger brain (700 cc average)
- than its australopithecine ancestors,
- but smaller teeth
- It was about 1.2-1.3 m tall
- and only weighed 32-37 kg
54Homo Erectus
- In contrast to the australopithecines and H.
habilis, - which are unknown outside Africa,
- Homo erectus was a widely distributed species,
- having migrated from Africa during the
Pleistocene - Specimens have been found
- not only in Africa
- but also in Europe, India, China ("Peking Man"),
- and Indonesia ("Java Man")
55Survived in Asia Until About 100,000 Years Ago
- H. erectus evolved in Africa 1.8 million years
ago - and by 1 million years ago
- was present in southeastern and eastern Asia,
- where it survived until about 100,000 years ago
56H. erectus Differed From Modern Humans
- Although H. erectus developed regional variations
in form, - the species differed from modern humans in
several ways - Its brain size of 800-1300 cc,
- though much larger than that of H. habilis,
- was still less than the average for Homo sapiens
(1350 cc)
57Size Similar to Humans
- H. erectus's skull was thick-walled,
- its face was massive,
- it had prominent brow ridges,
- and its teeth were slightly larger than those of
present-day humans - H. erectus was comparable to size to modem
humans, - standing between 1.6 and 1.8 m tall
- and weighing between 53 and 63 kg
58Skull of Homo erectus
- A reconstruction of the skull of Homo erectus
- a widely distributed species
- whose remains have been found
- in Africa, Europe, India, China, and Indonesia
59H. erectus Was a Tool Maker
- The archaeological record indicates
- that H. erectus was a tool maker
- Furthermore, some sites show evidence
- that its members used fire and lived in caves,
- an advantage for those living
- in more northerly climates
60Homo erectus Using Tools
- Re-creation of a Pleistocene setting in Europe
- in which members of Homo erectus are
- using fire and stone tools
61The "Out of Africa" View
- Currently, a heated debate surrounds the
transition - from H. erectus to our own species, Homo sapiens
- Paleoanthropologists are split into two camps
- On the one side are those who support
- the "out of Africa" view
- According to this camp, early modern humans
- evolved from a single woman in Africa,
- whose offspring then migrated from Africa,
- perhaps as recently as 100,000 years ago
- and populated Europe and Asia,
- driving the earlier hominid populations to
extinction
62The "Multiregional" View
- On the other side are those supporting the
"multiregional" view - According to this hypothesis,
- early modern humans did not have an isolated
origin in Africa, - but rather established separate populations
throughout Eurasia - Occasional contact and interbreeding
- between these populations enabled our species to
maintain its overall cohesiveness, - while still preserving the regional differences
- in people we see today
63Homo sapiens Evolved From H. erectus
- Regardless of which theory turns out to be
correct, - our species, H. sapiens
- most certainly evolved from H. erectus
64Neaderthals
- Perhaps the most famous of all fossil humans are
the Neanderthals, - who inhabited Europe and the Near East
- from about 200,000 to 30,000 years ago
- Some paleoanthropologists regard the Neanderthals
- as a variety or subspecies of our own species
(Homo sapiens neanderthalensis), - whereas others regard them as a separate species
(Homo neanderthalensis)
65Neanderthal Skull
- Reconstructed Neanderthal skull
- The Neanderthals were characterized
- by prominent heavy brow ridges and weak chin
66Cold Adapted
- The Neanderthal body was
- somewhat more massive
- and heavily muscled
- than ours,
- with rather short lower limbs,
- much like those
- of other cold-adapted people of today
67Burial Ceremony in a Cave
- Archaeological evidence indicates
- Neanderthals lived in caves
- and participated in ritual burials
- as depicted in this painting of a burial ceremony
- such as occurred approximately 60,000 years ago
- at Shanidar Cave, Iraq
68Took Care of Their Injured
- The remains of Neanderthals
- are found chiefly in caves
- and hutlike rock shelters,
- which also contain a variety
- of specialized stone tools and weapons
- Furthermore, archaeological evidence indicates
- that Neanderthals commonly
- took care of their injured and buried their dead,
- frequently with such grave items
- as tools, food, and perhaps even flowers
69Cro-Magnons
- About 30,000 years ago,
- humans closely resembling modern Europeans
- moved into the region inhabited
- by the Neanderthals and completely replaced them
- Cro-Magnons, the name given to
- the successors of the Neanderthals in France,
- lived from about 35,000 to 10,000 years ago
- during this period the development of art and
technology - far exceeded anything the world had seen before
70Nomadic Hunters
- Highly skilled nomadic hunters,
- Cro-Magnons followed the herds
- in their seasonal migrations
- They used a variety of specialized tools
- in their hunts, including perhaps the bow and
arrow - They sought refuge in caves and rock shelters
- and formed living groups of various sizes
71Cave Painters
- Cro-Magnons were also cave painters
- Using paints made from manganese and iron oxides,
- Cro-Magnon people painted hundreds of scenes
- on the ceilings and walls of caves
- in France and Spain,
- where many of them are still preserved today
72Painting From a Cave in France
- Cro-Magnons were very skilled cave painters
- Painting of a horse
- from the cave of Niaux, France
73Cultural Evolution
- With the appearance of Cro-Magnons,
- human evolution has become
- almost entirely cultural rather than biological
- Humans have spread throughout the world
- by devising means to deal with a broad range
- of environmental conditions
- Since the evolution of the Neanderthals
- about 200,000 years ago,
- humans have gone from a stone culture
- to a technology that has allowed us
- to visit other planets with space probes
- and land astronauts on the Moon
74Future
- It remains to be seen
- how we will use this technology in the future
- and whether we will continue as a species,
- evolve into another species,
- or become extinct as many groups have before us
75Summary
- The primates evolved during the Paleocene
- Several trends help characterize primate
- and differentiate them from other mammalian
orders, - including a change in overall skeletal structure
and mode of locomotion - an increase in brain size
- stereoscopic vision
- and evolution of a grasping hand with opposable
thumb
76Summary
- The primates are divided into two suborders
- the prosimians and the anthropoids
- The prosimians are the oldest primate lineage
- and include lemurs, lorises, tarsiers, and tree
shrews - The anthropoids include
- the New and Old World monkeys,
- apes,
- and hominids, which are humans
- and their extinct ancestors
77Summary
- The oldest known hominid is Sahelanthropus
tchadensis, - dated at nearly 7 million years
- then two subspecies of Ardipithecus at 5.8 and
4.4 million years respectively - These early hominids were succeeded by the
australopithecines - a fully bipedal group that evolved in Africa 4.2
million years ago
78Summary
- Currently, five australopithecine species are
known - Australopithecus anamensis, A. afarensis, A.
africanus, A. robustus and A. boisei - The human lineage began
- about 2.5 million years ago in Africa
- with the evolution of Homo habilis,
- which survived as a species
- until about 1.6 million years ago
- Homo erectus evolved from habilis
- about 1.8 million years ago
- and was the first hominid to migrate out of Africa
79Summary
- Between 1 and 1.8 million years ago, H. erectus
- had spread to Europe, India, China, and Indonesia
- H. erectus used fire, made tools, and lived in
caves - Sometime between 200,000 and 100,000 years ago
- Homo Sapiens evolved from H. erectus
- These early humans may be ancestors of Neaderthals
80Summary
- Neanderthals were not much different
- from present-day humans,
- only more robust
- and with differently shaped skulls
- They made specialized tools and weapons,
- apparently took care of their injured,
- and buried their dead
- The Cro-Magnons were the successors
- of the Neanderthals
- and lived from about 35,000-10,000 years ago
81Summary
- Cro-Magnons were highly skilled nomadic hunters,
- formed living groups of various sizes,
- and were also skilled cave painters
- Modern humans succeeded the Cro-Magnons
- about 10,000 years ago
- and have spread throughout the world
82New Hypotheses About Our Ancestry
- In this section we examine the various primate
groups, - in particular the origin and evolution of the
hominids, - the group that includes our ancestors
- However, we must point out
- that new discoveries of fossil hominids,
- as well as new techniques for scientific analysis
- are leading to new hypotheses about our ancestry
83Exciting Study
- Even as we speak, therefore,
- new discoveries may have changed
- some of our conclusions
- based on what we currently know
- Such is the nature of paleoanthropology
- and one reason why the study of hominids
- is so exciting
84Variations
- In fact, some primates
- have retained certain primitive features,
- whereas others show all
- or most of these trends
85Classification of Primates
- Order Primates
- Suborder Prosimii (lower primates) Lemurs,
lorises, tarsiers, tree shrews - Suborder Anthropoidea (Higher primates) Monkeys,
apes, humans - Superfamily Cercopithecoidea Macaque, baboon,
proboscis monkey - Superfamily Ceboidea Howler, spider, and
squirrel monkeys - Superfamily Hominoidea Apes, humans
- Family Pongidae Chimpanzees, orangutans,
gorillas - Family Hylobatidae Gibbons, siamangs
- Family Hominidae Humans
86Larger Reorganized Brain
- In addition, hominids show a trend
- toward a large and internally reorganized brain
- An increase in brain size and organization
- is apparent in comparing the brains of
87Larger Reorganized Brain
- In addition, hominids show a trend
- toward a large and internally reorganized brain
- An increase in brain size and organization
- is apparent in comparing the brains of
88Ring-Tailed Lemur
- Ring-Tailed Lemur are also prosimians
89New World Monkey
- New World Monkeys constitute a superfamily
belonging to the suborder Anthropoidea
(anthropoids)
90Old Word Monkey
- Another superfamily of the anthropoids
- the Old World monkeys
91Chimpanzee
92Early History of Anthropoids
- Much of our knowledge about
- the early evolutionary history of anthropoids
- comes from fossils found in the Fayum district,
- a small desert area southwest of Cairo, Egypt
- During the Late Eocene and Oligocene,
- this region of Africa was a lush, tropical rain
forest - that supported a diverse and abundant fauna and
flora - Within this forest lived many different
- arboreal anthropoids as well as various prosimians
93Thousands of Fossil Specimens
- In fact, several thousand fossil specimens
- representing more than 20 species of primates
- have been recovered from rocks of this region
- One of the earliest anthropoids,
- and a possible ancestor of the Old World monkeys,
- was Aegyptopithecus,
- a small, fruit-eating, arboreal primate
- that weighed about 5 kg
94Response to Climatic Changes
- Many anthropologists think
- these hominid features evolved in response
- to major climatic changes
- that began during the Miocene
- and continued into the Pliocene
- During this time, vast savannas
- replaced the African tropical rain forests
- where the lower primates
- and Old World monkeys had been so abundant
95Mixed Forests and Grasslands
- As the savannas and grasslands
- continued to expand,
- the hominids made the transition
- from true forest dwelling
- to life to an environment
- of mixed forests and grasslands
96No Clear Consensus
- At present, no clear consensus exists
- on the evolutionary history of the hominid
lineage - This is due in part
- to the incomplete fossil record of hominids
- as well as new discoveries,
- and also because some species
- are known only from partial specimens
- or fragments of bone
- Because of this, scientists even disagree
- on the total number of hominid species
97Some Current Theories
- A complete discussion
- of all the proposed hominid species
- and the various competing schemes of hominid
evolution - is beyond the scope of this course
- However, we will discuss the generally accepted
taxa - and present some of the current theories
- of hominid evolution
98Evolutionary Scheme
- Many paleontologists accept
- the evolutionary scheme in which
- A. anamensis,
- the oldest known australopithecine,
- is ancestral to A. afarensis,
- who in turn is ancestral to A. africanus
- and the genus Homo,
- as well as the side branch of australopithecines
- represented by A. robustus and A. boisei
99Oldest Known Australopithecine
- The oldest known australopithecine
- is Australopithecus anamensis
- and was discovered at Kanapoi,
- a site near Lake Turkana, Kenya,
- by Meave Leakey
- of the National Museums of Kenya
- and her colleagues
100Similar Yet More Primitive
- A. anamensis, a 4.2-million-year-old bipedal
species, - has many features in common
- with its younger relative, A. afarensis,
- yet is more primitive in other characteristics,
- such as its teeth and skull
- A. anamensis
- is estimated to have been
- between 1.3 and 1.5 m tall
- and weighed between 33 and 50 kg
101Australopithecus afarensis
- Australopithecus afarensis,
- which lived 3.93.0 million years ago,
- was fully bipedal
- and exhibited great variability in size and
weight - Members of this species ranged
- from just over 1 m to about 1.5 m tall
- and weighed between 29 and 45 kg
102Hominid Footprints
- Most scientists think the footprints
- were made by Australopithecus afarensis
- whose fossils are found at Laetoli
103A. africanus Lived 3.02.3 mya
- A. afarensis was succeeded by
- Australopithecus africanus,
- which lived 3.02.3 million years ago
- The differences between the two species are
relatively minor - They were both about the same size and weight,
- but A. africanus had a flatter face
- and somewhat larger brain
104Specimens Found in Neander Valley
- In any case, their name comes
- from the first specimens found in 1856
- in the Neander Valley near Düsseldorf, Germany
105Neanderthals Difference
- The most notable difference between Neanderthals
- and present-day humans is in the skull
- Neanderthal skulls were long and low
- with heavy brow ridges, a projecting mouth,
- and a weak, receding chin
- Their brain was slightly larger on average
- than our own, and somewhat differently shaped
106First Humans in Cold Climates
- Given the specimens from more than 100 sites,
- we now know Neanderthals
- were not much different from us,
- only more robust
- Europe's Neanderthals were the first humans
- to move into truly cold climates,
- enduring miserably long winters and short summers
- as they pushed north into tundra country
107Understanding in Flux
- So where does this leave us, evolutionarily
speaking? - At a very exciting time as we seek to unravel the
history of our species - Our understanding of our genealogy
- is presently in flux,
- and each new fossil hominid find
- sheds more light on our ancestry
108Human Evolution
- Apparently human evolution
- is just like that of other groups
- Just as with non-hominid predecessors,
- our ancestors followed an uncertain path
- As new species evolved,
- they filled ecologic niches
- and either gave rise to descendants
- better adapted to the changing environment
- or became extinct
109Continuing Discoveries Change Our Ideas
- As recently as 2000,
- the earliest fossil evidence of hominids
- was from 4.4-million-year-old rocks in eastern
Africa - Since then, as just noted, discoveries have
pushed - that age back to almost 7 million years
110Anthropoid Superfamilies
- Anthropoids are divided into three superfamilies
- Old World monkeys,
- New World monkeys,
- and hominoids
111Next Oldest Hominid
- The next oldest hominid is Orrorin tugenensis,
- whose fossils have been dated at six million
years - and consist of bits of jaw, isolated teeth,
- finger, arm, and partial upper leg bones
- At this time, debate continues
- as to exactly where Orrorin tugenensis fits in
the hominid lineage
112Ardipithecus ramidus
- Sometime between 5.8 and 5.2 million years ago,
- another hominid was present in eastern Africa
- Ardipithecus ramidus kadabba is older
- than its 4.4 million year old relative
- Ardipithecus ramidus ramidus
- Ardipithecus ramidus kadabba is very similar
- in most features to Ardipithecus ramidus ramidus
- but in certain features of its teeth
- is more apelike than its younger relative
113Geologic Age Ranges
- The geologic age ranges
- for the commonly accepted species of hominids
114Bushy Model of Human Evolution
- For instance, paleoanthropologists now think
- that human evolution branched many times
- rather than evolving in a somewhat straight line
- leading to modern humans
- According to this bushy model
- of human evolution,
- such key traits as
- upright walking,
- manual dexterity
- and a large brain
- evolved more than once,
- and produced many evolutionary dead-ends
115When Humans and Chimpanzees Diverged
- Presently, most paleoanthropologists accept
- that the human-chimpanzee stock separated
- from gorillas about 8 million years ago
- and humans separated from chimpanzees
- about 5 million years ago
- Thus Sahelanthropus tchadensis is
- at or near the point in time
- when humans and chimpanzees diverged
116Oldest Known Hominid
- Discovered in northern Chad's Djurab Desert
- in July, 2002,
- the nearly 7-million-year-old skull
- and dental remains of Sahelanthropus tchadensis
- make it the oldest known hominid yet unearthed
- and very close to the time
- when humans diverged
- from our closest-living relative, the chimpanzee
117Habitual Bipedal Walkers
- Although many paleoanthropologists think
- both Orrorin tugenensis and Ardipithecus ramidus
kadabba - were habitual bipedal walkers
- and thus on a direct evolutionary line to humans,
- others are not as impressed with the fossil
evidence - and are reserving judgment
- Until more fossil evidence is found and analyzed,
- any single scheme of hominid evolution presented
here would be premature
118Global Climatic Cycles in Geologic Time
from L E Waite (2002), modified from Fischer
(1984)
119Temperature change last 2000 years
http//dels.nas.edu/dels/rpt_briefs/Surface_Temps_
final.pdf
120Temperature change _at_ different time scales
Glacial and Interglacial Periods
http//dels.nas.edu/basc/Climate-LOW.pdf
121Leg Bones and Feet Needed
- Sahelanthropus tchadensis may have been
- bipedal in its walking habits,
- but until bones from its legs and feet are found,
- that supposition remains conjecture
122Tarsier
- Tarsiers are prosimian primates
123Eocene Prosimian
- Notharctus, a primitive Eocene prosimian
124Prosimians Declined in Cooler Climate
- As the continents moved northward
- during the Cenozoic
- and the climate changed from warm tropical
- to cooler mid-latitude conditions,
- the prosimian population decreased
- in both abundance and diversity
125Old Word Monkey
- Superfamily Cercopithecoidea
- the Old World monkeys
126New World Monkey
- New World Monkeys are members of the superfamily
Ceboidea
127Great Apes
- The third superfamily is the great apes,
- which include Gorillas and...
128Proconsul
- Probable appearance of Proconsul, a dryopithecine
129Hope of Life
- In fact, a skull found in the African nation of
Chad, - in 2002 and named Sahelanthropus tchadensis
- but nicknamed Tourmaï,
- which means "hope of life"
- in the local Goran language,
- has pushed back the origins of humans
- to nearly 7 million years ago
- Instead of simplifying our ancestry, however,
- its discovery has raised more questions
- than it answered
130Cro-Magnon Camp
- Re-creation of a Cro-Magnon camp in Europe